L(s) = 1 | + (−0.984 + 0.173i)3-s + (0.939 − 0.342i)9-s + (−0.223 − 1.26i)11-s + (−0.939 + 1.62i)17-s + (−0.984 − 1.70i)19-s + (−0.939 − 0.342i)25-s + (−0.866 + 0.5i)27-s + (0.439 + 1.20i)33-s + (−0.326 + 0.118i)41-s + (0.118 + 0.673i)43-s + (0.173 − 0.984i)49-s + (0.642 − 1.76i)51-s + (1.26 + 1.50i)57-s + (−0.342 + 1.93i)59-s + (−1.20 + 0.439i)67-s + ⋯ |
L(s) = 1 | + (−0.984 + 0.173i)3-s + (0.939 − 0.342i)9-s + (−0.223 − 1.26i)11-s + (−0.939 + 1.62i)17-s + (−0.984 − 1.70i)19-s + (−0.939 − 0.342i)25-s + (−0.866 + 0.5i)27-s + (0.439 + 1.20i)33-s + (−0.326 + 0.118i)41-s + (0.118 + 0.673i)43-s + (0.173 − 0.984i)49-s + (0.642 − 1.76i)51-s + (1.26 + 1.50i)57-s + (−0.342 + 1.93i)59-s + (−1.20 + 0.439i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2724905074\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2724905074\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.984 - 0.173i)T \) |
good | 5 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 11 | \( 1 + (0.223 + 1.26i)T + (-0.939 + 0.342i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.984 + 1.70i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.118 - 0.673i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.342 - 1.93i)T + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (1.20 - 0.439i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (1.62 + 0.592i)T + (0.766 + 0.642i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.673444378485170118089906286846, −7.68272614980441166591017201591, −6.73538001357362159418807339950, −6.15844244848556827162175288519, −5.63564539030466538923782947496, −4.54259842456877966721574338488, −4.06668115527038688421875152119, −2.88429841661822234044393913108, −1.66587044523677264107016348475, −0.17620764276159262422991927162,
1.59826181722400434346720617530, 2.41277119803446653314194383479, 3.90299461537331214472799462793, 4.57262031017533570309091169990, 5.29839552680922394285677376484, 6.08716548490742526269846984113, 6.86836884032489286637672543128, 7.42135093064978001350945223395, 8.148584125843865166317825105846, 9.259055092436486906953695385939