Properties

Label 2-3456-1.1-c1-0-36
Degree $2$
Conductor $3456$
Sign $-1$
Analytic cond. $27.5962$
Root an. cond. $5.25321$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.64·5-s + 7-s − 0.354·11-s − 4.29·13-s + 3.64·17-s + 4.29·19-s − 0.354·23-s + 8.29·25-s + 3.29·29-s + 9.29·31-s − 3.64·35-s − 5·37-s − 3.29·41-s + 9.29·43-s − 3.64·47-s − 6·49-s − 12·53-s + 1.29·55-s − 14.9·59-s + 8.29·61-s + 15.6·65-s − 7.58·67-s − 15.2·71-s + 5·73-s − 0.354·77-s − 10.2·79-s − 12·83-s + ⋯
L(s)  = 1  − 1.63·5-s + 0.377·7-s − 0.106·11-s − 1.19·13-s + 0.884·17-s + 0.984·19-s − 0.0738·23-s + 1.65·25-s + 0.611·29-s + 1.66·31-s − 0.616·35-s − 0.821·37-s − 0.514·41-s + 1.41·43-s − 0.531·47-s − 0.857·49-s − 1.64·53-s + 0.174·55-s − 1.94·59-s + 1.06·61-s + 1.94·65-s − 0.926·67-s − 1.81·71-s + 0.585·73-s − 0.0403·77-s − 1.15·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3456\)    =    \(2^{7} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(27.5962\)
Root analytic conductor: \(5.25321\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.64T + 5T^{2} \)
7 \( 1 - T + 7T^{2} \)
11 \( 1 + 0.354T + 11T^{2} \)
13 \( 1 + 4.29T + 13T^{2} \)
17 \( 1 - 3.64T + 17T^{2} \)
19 \( 1 - 4.29T + 19T^{2} \)
23 \( 1 + 0.354T + 23T^{2} \)
29 \( 1 - 3.29T + 29T^{2} \)
31 \( 1 - 9.29T + 31T^{2} \)
37 \( 1 + 5T + 37T^{2} \)
41 \( 1 + 3.29T + 41T^{2} \)
43 \( 1 - 9.29T + 43T^{2} \)
47 \( 1 + 3.64T + 47T^{2} \)
53 \( 1 + 12T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 - 8.29T + 61T^{2} \)
67 \( 1 + 7.58T + 67T^{2} \)
71 \( 1 + 15.2T + 71T^{2} \)
73 \( 1 - 5T + 73T^{2} \)
79 \( 1 + 10.2T + 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + 2.93T + 89T^{2} \)
97 \( 1 + 1.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.025065500274080504733551270978, −7.59578361671438742100982367772, −7.03777305914859827849708543611, −5.95227196659194176390266399095, −4.81612751489609415792154340702, −4.56552241887556370295646166041, −3.39325739348560635164175647502, −2.82714185758809143747148933728, −1.26122733187792306600673514828, 0, 1.26122733187792306600673514828, 2.82714185758809143747148933728, 3.39325739348560635164175647502, 4.56552241887556370295646166041, 4.81612751489609415792154340702, 5.95227196659194176390266399095, 7.03777305914859827849708543611, 7.59578361671438742100982367772, 8.025065500274080504733551270978

Graph of the $Z$-function along the critical line