L(s) = 1 | + (0.608 − 0.793i)2-s + (0.130 − 0.991i)3-s + (−0.258 − 0.965i)4-s + (−0.866 + 0.5i)5-s + (−0.707 − 0.707i)6-s + (−0.923 − 0.382i)8-s + (−0.965 − 0.258i)9-s + (−0.130 + 0.991i)10-s + (0.965 − 1.67i)11-s + (−0.991 + 0.130i)12-s + (−0.608 − 1.05i)13-s + (0.382 + 0.923i)15-s + (−0.866 + 0.499i)16-s + (−0.793 + 0.608i)18-s + i·19-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.608 − 0.793i)2-s + (0.130 − 0.991i)3-s + (−0.258 − 0.965i)4-s + (−0.866 + 0.5i)5-s + (−0.707 − 0.707i)6-s + (−0.923 − 0.382i)8-s + (−0.965 − 0.258i)9-s + (−0.130 + 0.991i)10-s + (0.965 − 1.67i)11-s + (−0.991 + 0.130i)12-s + (−0.608 − 1.05i)13-s + (0.382 + 0.923i)15-s + (−0.866 + 0.499i)16-s + (−0.793 + 0.608i)18-s + i·19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.055826178\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.055826178\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.608 + 0.793i)T \) |
| 3 | \( 1 + (-0.130 + 0.991i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.608 + 1.05i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.58T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + 1.98iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.60 - 0.923i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.923 + 1.60i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.437677482135781753598227711688, −7.54448442029542848018586566477, −6.75600685514682202474217545813, −5.97792864120438134151016002375, −5.45879276549268915339793875158, −4.15225621376308093478556664900, −3.28181258747602942120024730756, −2.97670748908003387623806810732, −1.63175528378023792162419916442, −0.49336302075519967249250810399,
2.12035541184140216387062252782, 3.35813334741703700696952532469, 4.13037061703566165036827007301, 4.68877989488035156939942663487, 5.01023873979475344111559169841, 6.28184530029367151530759514036, 7.12378307816527959813753155762, 7.51305793878250091583860558440, 8.612865556495369061263494384176, 9.142303459981887883031672700685