| L(s)  = 1  |   + (0.130 + 0.991i)2-s   + (−0.608 − 0.793i)3-s   + (−0.965 + 0.258i)4-s   + (0.866 − 0.5i)5-s   + (0.707 − 0.707i)6-s     + (−0.382 − 0.923i)8-s   + (−0.258 + 0.965i)9-s   + (0.608 + 0.793i)10-s   + (0.258 − 0.448i)11-s   + (0.793 + 0.608i)12-s   + (−0.130 − 0.226i)13-s     + (−0.923 − 0.382i)15-s   + (0.866 − 0.5i)16-s     + (−0.991 − 0.130i)18-s   − i·19-s   + (−0.707 + 0.707i)20-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.130 + 0.991i)2-s   + (−0.608 − 0.793i)3-s   + (−0.965 + 0.258i)4-s   + (0.866 − 0.5i)5-s   + (0.707 − 0.707i)6-s     + (−0.382 − 0.923i)8-s   + (−0.258 + 0.965i)9-s   + (0.608 + 0.793i)10-s   + (0.258 − 0.448i)11-s   + (0.793 + 0.608i)12-s   + (−0.130 − 0.226i)13-s     + (−0.923 − 0.382i)15-s   + (0.866 − 0.5i)16-s     + (−0.991 − 0.130i)18-s   − i·19-s   + (−0.707 + 0.707i)20-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.012080222\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.012080222\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 + (-0.130 - 0.991i)T \)  | 
 | 3 |  \( 1 + (0.608 + 0.793i)T \)  | 
 | 5 |  \( 1 + (-0.866 + 0.5i)T \)  | 
 | 19 |  \( 1 + iT \)  | 
| good | 7 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 11 |  \( 1 + (-0.258 + 0.448i)T + (-0.5 - 0.866i)T^{2} \)  | 
 | 13 |  \( 1 + (0.130 + 0.226i)T + (-0.5 + 0.866i)T^{2} \)  | 
 | 17 |  \( 1 + T^{2} \)  | 
 | 23 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 29 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 31 |  \( 1 + (-0.5 + 0.866i)T^{2} \)  | 
 | 37 |  \( 1 + 1.98T + T^{2} \)  | 
 | 41 |  \( 1 + (-0.5 + 0.866i)T^{2} \)  | 
 | 43 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 47 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 53 |  \( 1 + 1.58iT - T^{2} \)  | 
 | 59 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 61 |  \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)  | 
 | 67 |  \( 1 + (-0.662 + 0.382i)T + (0.5 - 0.866i)T^{2} \)  | 
 | 71 |  \( 1 - T^{2} \)  | 
 | 73 |  \( 1 - T^{2} \)  | 
 | 79 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 83 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 89 |  \( 1 + T^{2} \)  | 
 | 97 |  \( 1 + (-0.382 + 0.662i)T + (-0.5 - 0.866i)T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.551866495822772953077943189057, −7.908709359152454533834940462901, −6.87476517716202356123578688064, −6.62034757165040573255097929264, −5.64453947798927230582107722113, −5.26618727610184782261134691462, −4.48472751705546701325641483525, −3.18228999702560449612147326128, −1.91909140064854229525746504538, −0.66357102015158349358907311905, 
1.39289513815373358368197000347, 2.39836636892107978870594224145, 3.43534726815659075525077427257, 4.08726426377000348961679484068, 5.05409809421712337525693007847, 5.60908436430732942804065685628, 6.36791016221368135529796660700, 7.25176632249940555389090032628, 8.551287669426615980787598022588, 9.156764868638427495150829208465