L(s) = 1 | + (−0.608 − 0.793i)2-s + (−0.130 − 0.991i)3-s + (−0.258 + 0.965i)4-s + (−0.866 − 0.5i)5-s + (−0.707 + 0.707i)6-s + (0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.130 + 0.991i)10-s + (0.965 + 1.67i)11-s + (0.991 + 0.130i)12-s + (0.608 − 1.05i)13-s + (−0.382 + 0.923i)15-s + (−0.866 − 0.499i)16-s + (0.793 + 0.608i)18-s − i·19-s + (0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.608 − 0.793i)2-s + (−0.130 − 0.991i)3-s + (−0.258 + 0.965i)4-s + (−0.866 − 0.5i)5-s + (−0.707 + 0.707i)6-s + (0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.130 + 0.991i)10-s + (0.965 + 1.67i)11-s + (0.991 + 0.130i)12-s + (0.608 − 1.05i)13-s + (−0.382 + 0.923i)15-s + (−0.866 − 0.499i)16-s + (0.793 + 0.608i)18-s − i·19-s + (0.707 − 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7144826969\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7144826969\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.608 + 0.793i)T \) |
| 3 | \( 1 + (0.130 + 0.991i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.608 + 1.05i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.58T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.98iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.60 - 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.923 + 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.329437033946004577630034998495, −7.977783626921261244871734242584, −7.09964261463851479374254614600, −6.71400212403116049830554977192, −5.32518374129700463034654924745, −4.47544779888870334481435258210, −3.65973307474833938606233317041, −2.64118080410222518559570081112, −1.64017230237159332800273573674, −0.68178716466406545537556244799,
1.09137734718487361615315472795, 2.89146273401771508686794442121, 4.01623843812843241661853528292, 4.19673022273076374632566926147, 5.55729248504502775626724734506, 6.18180516558471899889199600136, 6.66375923387441076743584421219, 7.83900499708866855020984946155, 8.317175853571918987779862185328, 9.108759328793372962920640191392