L(s) = 1 | + (−0.923 − 0.382i)2-s + (−0.608 + 0.793i)3-s + (0.707 + 0.707i)4-s + (0.866 + 0.5i)5-s + (0.866 − 0.499i)6-s + (−0.382 − 0.923i)8-s + (−0.258 − 0.965i)9-s + (−0.608 − 0.793i)10-s + (−0.258 − 0.448i)11-s + (−0.991 + 0.130i)12-s + (0.130 − 0.226i)13-s + (−0.923 + 0.382i)15-s + i·16-s + (−0.130 + 0.991i)18-s − i·19-s + (0.258 + 0.965i)20-s + ⋯ |
L(s) = 1 | + (−0.923 − 0.382i)2-s + (−0.608 + 0.793i)3-s + (0.707 + 0.707i)4-s + (0.866 + 0.5i)5-s + (0.866 − 0.499i)6-s + (−0.382 − 0.923i)8-s + (−0.258 − 0.965i)9-s + (−0.608 − 0.793i)10-s + (−0.258 − 0.448i)11-s + (−0.991 + 0.130i)12-s + (0.130 − 0.226i)13-s + (−0.923 + 0.382i)15-s + i·16-s + (−0.130 + 0.991i)18-s − i·19-s + (0.258 + 0.965i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7785367698\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7785367698\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 + 0.382i)T \) |
| 3 | \( 1 + (0.608 - 0.793i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.130 + 0.226i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.98T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.58iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.992699401468730298040973138879, −8.338217650728594079549776415278, −7.27276224461893349538513627498, −6.56530986056198345683969161222, −5.91473453522791689940282937839, −5.11704902855223877469380295909, −3.99214030190157319808742717337, −3.07266751960508398699671453943, −2.33487889964583394797937349525, −0.867919277408200991660004542321,
1.01294186525285914989552474147, 1.86622510072421525712307288242, 2.65720815492108101038191854309, 4.46041569093696519634866720360, 5.33956764356529257449070530065, 5.99802567339021514993699720403, 6.44954504465441876421322438538, 7.38777926485293254964434711421, 7.946267767920676883708449916615, 8.659056487088697167205886436006