L(s) = 1 | + (0.793 − 0.608i)2-s + (0.991 − 0.130i)3-s + (0.258 − 0.965i)4-s + (−0.866 − 0.5i)5-s + (0.707 − 0.707i)6-s + (−0.382 − 0.923i)8-s + (0.965 − 0.258i)9-s + (−0.991 + 0.130i)10-s + (−0.965 − 1.67i)11-s + (0.130 − 0.991i)12-s + (−0.793 + 1.37i)13-s + (−0.923 − 0.382i)15-s + (−0.866 − 0.499i)16-s + (0.608 − 0.793i)18-s − i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.793 − 0.608i)2-s + (0.991 − 0.130i)3-s + (0.258 − 0.965i)4-s + (−0.866 − 0.5i)5-s + (0.707 − 0.707i)6-s + (−0.382 − 0.923i)8-s + (0.965 − 0.258i)9-s + (−0.991 + 0.130i)10-s + (−0.965 − 1.67i)11-s + (0.130 − 0.991i)12-s + (−0.793 + 1.37i)13-s + (−0.923 − 0.382i)15-s + (−0.866 − 0.499i)16-s + (0.608 − 0.793i)18-s − i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.083537776\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.083537776\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.793 + 0.608i)T \) |
| 3 | \( 1 + (-0.991 + 0.130i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.793 - 1.37i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.21T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 0.261iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.662 + 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.382 - 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.714741839737108623659313321480, −7.72829670127337784611151086629, −7.09942585001661623127998659357, −6.19814505398968739883181438166, −5.11886167966613857304073863656, −4.48738117322833908521155344309, −3.71876518707225357180094805345, −2.94498887402321492475303260403, −2.20496094170765588571483042032, −0.811112552393919039379367480379,
2.21405879764534236248694964097, 2.84190455339914079449166631482, 3.63284430255391526509416888372, 4.50311667805950531292391341658, 5.00421181687238943659346477990, 6.10381937348911185954383914810, 7.20673252578421649666402418831, 7.63432265714274344678481964885, 7.86493445920096574656388695641, 8.744958647138070221444216129264