L(s) = 1 | + (−0.258 − 0.965i)5-s + (−1.36 − 1.36i)7-s − 1.93i·11-s + (−0.707 + 0.707i)17-s + i·19-s + (−0.866 + 0.499i)25-s + (−0.965 + 1.67i)35-s + (−1.36 + 1.36i)43-s + (1.22 − 1.22i)47-s + 2.73i·49-s + (−1.86 + 0.499i)55-s + 61-s + (−0.366 + 0.366i)73-s + (−2.63 + 2.63i)77-s + (−1.41 − 1.41i)83-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)5-s + (−1.36 − 1.36i)7-s − 1.93i·11-s + (−0.707 + 0.707i)17-s + i·19-s + (−0.866 + 0.499i)25-s + (−0.965 + 1.67i)35-s + (−1.36 + 1.36i)43-s + (1.22 − 1.22i)47-s + 2.73i·49-s + (−1.86 + 0.499i)55-s + 61-s + (−0.366 + 0.366i)73-s + (−2.63 + 2.63i)77-s + (−1.41 − 1.41i)83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5143631379\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5143631379\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.258 + 0.965i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 11 | \( 1 + 1.93iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 47 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.438370762152526111804821067853, −7.78053509994837768083992784185, −6.81694279092104228701933939525, −6.14803977278041848191696613181, −5.51430490042788972606513826618, −4.26439159600123168862638164766, −3.75205251474023322678618222852, −3.06751056731831642776558594651, −1.36349835383364741347430811139, −0.30332902341634808768270322153,
2.27127599172579758269123387846, 2.56640689119554088322715137960, 3.57835420325923909536292460833, 4.59010677291580774392309409535, 5.44278778393484696989368753979, 6.41031755584598911449972816316, 6.92115171061132835452670872379, 7.37379413713436097791848374805, 8.584298591017360517429933217694, 9.300310965079742376159156011805