L(s) = 1 | + (−0.258 + 0.965i)5-s + (−0.366 − 0.366i)7-s − 1.93i·11-s + (−1.22 + 1.22i)17-s − i·19-s + (−1.41 − 1.41i)23-s + (−0.866 − 0.499i)25-s + (0.448 − 0.258i)35-s + (0.366 − 0.366i)43-s + (−0.707 + 0.707i)47-s − 0.732i·49-s + (1.86 + 0.499i)55-s − 61-s + (1.36 − 1.36i)73-s + (−0.707 + 0.707i)77-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)5-s + (−0.366 − 0.366i)7-s − 1.93i·11-s + (−1.22 + 1.22i)17-s − i·19-s + (−1.41 − 1.41i)23-s + (−0.866 − 0.499i)25-s + (0.448 − 0.258i)35-s + (0.366 − 0.366i)43-s + (−0.707 + 0.707i)47-s − 0.732i·49-s + (1.86 + 0.499i)55-s − 61-s + (1.36 − 1.36i)73-s + (−0.707 + 0.707i)77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6049202873\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6049202873\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.258 - 0.965i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 11 | \( 1 + 1.93iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 23 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 47 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.431298193303242025865280019640, −7.975093523837504091580740690969, −6.86424925471777761059481014196, −6.34155196996909666895815618125, −5.88481643016533964258852876278, −4.51839790805903713915146442093, −3.77271380439567596863926266422, −3.04867160493463978979527672956, −2.13717974467701869231200817384, −0.33661159443476198702808413701,
1.60255027500122895457195215990, 2.36248264167170182165436540184, 3.73002746503298045970271074475, 4.45847986471689192288911696681, 5.09706881974316015407828603059, 5.92977610891591560523447598281, 6.88543791615224924870088865801, 7.58542541400586705024479083324, 8.182545373131979351682439216477, 9.241238874738344080503657231164