L(s) = 1 | + (0.258 − 0.965i)5-s + (−0.366 − 0.366i)7-s + 1.93i·11-s + (1.22 − 1.22i)17-s − i·19-s + (1.41 + 1.41i)23-s + (−0.866 − 0.499i)25-s + (−0.448 + 0.258i)35-s + (0.366 − 0.366i)43-s + (0.707 − 0.707i)47-s − 0.732i·49-s + (1.86 + 0.499i)55-s − 61-s + (1.36 − 1.36i)73-s + (0.707 − 0.707i)77-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)5-s + (−0.366 − 0.366i)7-s + 1.93i·11-s + (1.22 − 1.22i)17-s − i·19-s + (1.41 + 1.41i)23-s + (−0.866 − 0.499i)25-s + (−0.448 + 0.258i)35-s + (0.366 − 0.366i)43-s + (0.707 − 0.707i)47-s − 0.732i·49-s + (1.86 + 0.499i)55-s − 61-s + (1.36 − 1.36i)73-s + (0.707 − 0.707i)77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.333946999\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.333946999\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.258 + 0.965i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 11 | \( 1 - 1.93iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 23 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 47 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.998514876762376102713684645654, −7.72130160977110981066134188606, −7.32765765562538489428911557396, −6.64794669856269170416453635743, −5.29809054011287065828376594316, −5.08034533213587497711196158494, −4.19421566396788458193642454659, −3.14845991911393060235128940043, −2.04776090416592844066342117014, −0.962978049269753485387334396222,
1.20215037093071346453390279227, 2.65703597581308873831471597091, 3.23021733854152714002124830559, 3.94726253803037054607800921498, 5.34257426181552884005561014223, 6.12970515784325624163041679143, 6.25632090678540533035559709314, 7.41472392006847521734580880011, 8.188639209592098344289279799612, 8.746335830200832539294586696183