L(s) = 1 | + (−0.965 − 0.258i)5-s + (0.366 + 0.366i)7-s − 0.517i·11-s + (0.707 − 0.707i)17-s + i·19-s + (0.866 + 0.499i)25-s + (−0.258 − 0.448i)35-s + (0.366 − 0.366i)43-s + (1.22 − 1.22i)47-s − 0.732i·49-s + (−0.133 + 0.499i)55-s + 61-s + (1.36 − 1.36i)73-s + (0.189 − 0.189i)77-s + (1.41 + 1.41i)83-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)5-s + (0.366 + 0.366i)7-s − 0.517i·11-s + (0.707 − 0.707i)17-s + i·19-s + (0.866 + 0.499i)25-s + (−0.258 − 0.448i)35-s + (0.366 − 0.366i)43-s + (1.22 − 1.22i)47-s − 0.732i·49-s + (−0.133 + 0.499i)55-s + 61-s + (1.36 − 1.36i)73-s + (0.189 − 0.189i)77-s + (1.41 + 1.41i)83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.106903756\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.106903756\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 11 | \( 1 + 0.517iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 47 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.619153505256773511881147184385, −8.015761479981538766662856833083, −7.44647316888822063009452726658, −6.57153030650901463822531229541, −5.54056366887859392811731700540, −5.04755445460646453526180093213, −3.95333612918543419515526058365, −3.39082753813057231526240897878, −2.23306346387909462543683826202, −0.872574791903430145345897614743,
1.03259088009734866975337964001, 2.40441943382496337813622217516, 3.38880843961196571299635815475, 4.22087013652295871497616924232, 4.80487260198088668693569958219, 5.83846848703630818465684277273, 6.77030659688749183217083252340, 7.42918818859619762269225536912, 7.945997613969061483803753472174, 8.703550360843151522931628778995