L(s) = 1 | + (−0.965 + 0.258i)5-s + (1.36 + 1.36i)7-s − 0.517i·11-s + (−1.22 + 1.22i)17-s − i·19-s + (1.41 + 1.41i)23-s + (0.866 − 0.499i)25-s + (−1.67 − 0.965i)35-s + (−1.36 + 1.36i)43-s + (0.707 − 0.707i)47-s + 2.73i·49-s + (0.133 + 0.499i)55-s − 61-s + (−0.366 + 0.366i)73-s + (0.707 − 0.707i)77-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)5-s + (1.36 + 1.36i)7-s − 0.517i·11-s + (−1.22 + 1.22i)17-s − i·19-s + (1.41 + 1.41i)23-s + (0.866 − 0.499i)25-s + (−1.67 − 0.965i)35-s + (−1.36 + 1.36i)43-s + (0.707 − 0.707i)47-s + 2.73i·49-s + (0.133 + 0.499i)55-s − 61-s + (−0.366 + 0.366i)73-s + (0.707 − 0.707i)77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.120472176\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.120472176\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.965 - 0.258i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 11 | \( 1 + 0.517iT - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 23 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 47 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.718143770335932839838332816347, −8.361476311292058912676567152109, −7.59739987589902724409266360472, −6.77786077457702827815064967201, −5.89633086124636026734407078712, −5.03494047780526172399237654449, −4.49475485109328180764802784075, −3.39472759488715313151029699830, −2.52850199688887599139407523924, −1.47349202592697686294977616376,
0.71056888543002195965574411535, 1.86350072823849887079897126766, 3.16130538638800040075147945219, 4.31381591137200768241679156589, 4.51574228467872569931676257980, 5.26075770628720146659244228842, 6.80096464050794788626067728220, 7.13702706768030264447704128887, 7.84249112866920095583081047410, 8.491566088660749417554420444692