L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (0.707 − 0.707i)5-s + 0.907i·7-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)9-s + (0.453 − 0.891i)10-s + (0.280 + 0.863i)14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + 0.999i·18-s + (0.951 + 0.690i)19-s + (0.156 − 0.987i)20-s + (−0.297 + 0.0966i)23-s − 1.00i·25-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (0.707 − 0.707i)5-s + 0.907i·7-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)9-s + (0.453 − 0.891i)10-s + (0.280 + 0.863i)14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + 0.999i·18-s + (0.951 + 0.690i)19-s + (0.156 − 0.987i)20-s + (−0.297 + 0.0966i)23-s − 1.00i·25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.844 + 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.844 + 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.639834877\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.639834877\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
good | 3 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 - 0.907iT - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.951 - 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.297 - 0.0966i)T + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (1.14 - 0.831i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (1.59 + 1.16i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-1.69 - 0.550i)T + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.0966 + 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (1.44 - 1.04i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.14 + 0.831i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (1.11 - 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.847257771959855030498904074559, −7.82830698775413916767469380133, −7.25872973787633520763987827227, −5.89122110799020351258249407294, −5.65330672627566420513115601511, −5.10877621240444143042367626677, −4.18210869944463901163721674880, −3.04969706513550876376852132868, −2.27214233888015899991266720740, −1.45074968598873491355058947537,
1.46674119081625083380250324453, 2.66687758492573957196678565269, 3.51158087097606233789362690468, 4.02040947399078654926859489546, 5.20992447348031407072102862152, 5.93455861211445863176612758608, 6.41971775166504097881064868383, 7.39542612060825335328767706291, 7.57239153324414158958078842334, 8.900496668766963990665275493927