L(s) = 1 | − 2-s + 1.73i·3-s + 4-s − 1.73i·6-s − 8-s − 1.99·9-s − 1.73i·11-s + 1.73i·12-s + 16-s + (0.5 − 0.866i)17-s + 1.99·18-s + 19-s + 1.73i·22-s − 1.73i·24-s − 1.73i·27-s + ⋯ |
L(s) = 1 | − 2-s + 1.73i·3-s + 4-s − 1.73i·6-s − 8-s − 1.99·9-s − 1.73i·11-s + 1.73i·12-s + 16-s + (0.5 − 0.866i)17-s + 1.99·18-s + 19-s + 1.73i·22-s − 1.73i·24-s − 1.73i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8017078125\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8017078125\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 - 1.73iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.73iT - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.73iT - T^{2} \) |
| 43 | \( 1 - 2T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 2T + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 1.73iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.056402805669477258596631684124, −8.404209732644910243364257872341, −7.78695609367521735742795523749, −6.68472479901453484304523322076, −5.67347435068572053191715688920, −5.36393957566869807667052840555, −4.13062940269282551602650599720, −3.21311437111088789647138916782, −2.79856551902569637085450036834, −0.873163239055474751422646823136,
0.986267311625149367007269361441, 1.90407178066539328671288275521, 2.45519607338942158229065846559, 3.69088918230921459155982029012, 5.21062489997373197573453862802, 6.03145623397622716056610672897, 6.74601685545353787565375654835, 7.48205750254631157204732195907, 7.59441119155831552696996950095, 8.500932636524943491894416705183