L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + i·8-s + i·12-s − i·13-s + 16-s − i·17-s + 19-s + 24-s − 26-s − i·27-s + 29-s − 31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + i·8-s + i·12-s − i·13-s + 16-s − i·17-s + 19-s + 24-s − 26-s − i·27-s + 29-s − 31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.103682544\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.103682544\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + iT \) |
good | 3 | \( 1 + iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT - T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.384575529735926501002882093057, −7.71164586609610340796897231098, −7.15424688169791163877526717660, −6.10166438067682901674595807113, −5.27130744532752529889585701655, −4.53691308171382262788289397432, −3.35175541615927728994161425271, −2.72058404522367616850090343107, −1.65723217219492008190225128345, −0.72433680886773515012673923822,
1.52013431555068982686160366509, 3.21763521507696769708548465033, 4.01831466737695484044654791721, 4.58173420821694290501554814653, 5.36024041351487036104265989203, 6.12228195856269291047744161338, 6.97095403286484449806973081214, 7.56091230370977776668696861534, 8.589805399756294158171615713261, 8.994612408453846349274771766540