Properties

Label 2-3400-136.123-c0-0-1
Degree $2$
Conductor $3400$
Sign $-0.927 - 0.374i$
Analytic cond. $1.69682$
Root an. cond. $1.30262$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−0.366 + 0.366i)3-s − 4-s + (−0.366 − 0.366i)6-s i·8-s + 0.732i·9-s + (0.366 + 0.366i)11-s + (0.366 − 0.366i)12-s + 16-s + (0.866 − 0.5i)17-s − 0.732·18-s + i·19-s + (−0.366 + 0.366i)22-s + (0.366 + 0.366i)24-s + (−0.633 − 0.633i)27-s + ⋯
L(s)  = 1  + i·2-s + (−0.366 + 0.366i)3-s − 4-s + (−0.366 − 0.366i)6-s i·8-s + 0.732i·9-s + (0.366 + 0.366i)11-s + (0.366 − 0.366i)12-s + 16-s + (0.866 − 0.5i)17-s − 0.732·18-s + i·19-s + (−0.366 + 0.366i)22-s + (0.366 + 0.366i)24-s + (−0.633 − 0.633i)27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 - 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 - 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3400\)    =    \(2^{3} \cdot 5^{2} \cdot 17\)
Sign: $-0.927 - 0.374i$
Analytic conductor: \(1.69682\)
Root analytic conductor: \(1.30262\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3400} (3251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3400,\ (\ :0),\ -0.927 - 0.374i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9220330580\)
\(L(\frac12)\) \(\approx\) \(0.9220330580\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
17 \( 1 + (-0.866 + 0.5i)T \)
good3 \( 1 + (0.366 - 0.366i)T - iT^{2} \)
7 \( 1 - iT^{2} \)
11 \( 1 + (-0.366 - 0.366i)T + iT^{2} \)
13 \( 1 - T^{2} \)
19 \( 1 - iT - T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 + iT^{2} \)
31 \( 1 + iT^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + (-1.36 - 1.36i)T + iT^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - iT^{2} \)
67 \( 1 + 1.73T + T^{2} \)
71 \( 1 + iT^{2} \)
73 \( 1 + (0.366 - 0.366i)T - iT^{2} \)
79 \( 1 - iT^{2} \)
83 \( 1 - 1.73iT - T^{2} \)
89 \( 1 + 1.73T + T^{2} \)
97 \( 1 + (-1 + i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.112022910835953426892962224266, −8.057600306041070978249536376799, −7.73529026953370710779386083829, −6.89816602989321957195655656041, −5.96925073901235451876086820366, −5.50083933275351093701190138639, −4.61669434896429059116152178468, −4.05730827886576024838729012760, −2.90524645947023410677566712235, −1.36289177815156283660929213053, 0.65242536691495196331825247305, 1.66636429725863629061618210899, 2.85518287969901363076571836770, 3.63868874067601640540385027634, 4.40484200849667755212365473994, 5.46723205670754353232063421029, 6.02518321651618348709777286731, 6.99022823751886683244303780653, 7.79021106604353350556774956084, 8.776999280772544786056639946130

Graph of the $Z$-function along the critical line