Properties

Label 2-3380-1.1-c1-0-11
Degree $2$
Conductor $3380$
Sign $1$
Analytic cond. $26.9894$
Root an. cond. $5.19513$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.35·3-s − 5-s − 4.17·7-s − 1.17·9-s + 5.52·11-s − 1.35·15-s − 0.703·17-s − 6.82·19-s − 5.64·21-s − 2.64·23-s + 25-s − 5.64·27-s + 8.17·29-s + 9.52·31-s + 7.46·33-s + 4.17·35-s + 6.87·37-s − 0.703·41-s − 1.35·43-s + 1.17·45-s + 8.17·47-s + 10.4·49-s − 0.951·51-s + 5.04·53-s − 5.52·55-s − 9.22·57-s + 12.2·59-s + ⋯
L(s)  = 1  + 0.780·3-s − 0.447·5-s − 1.57·7-s − 0.390·9-s + 1.66·11-s − 0.349·15-s − 0.170·17-s − 1.56·19-s − 1.23·21-s − 0.552·23-s + 0.200·25-s − 1.08·27-s + 1.51·29-s + 1.71·31-s + 1.30·33-s + 0.705·35-s + 1.13·37-s − 0.109·41-s − 0.206·43-s + 0.174·45-s + 1.19·47-s + 1.48·49-s − 0.133·51-s + 0.693·53-s − 0.744·55-s − 1.22·57-s + 1.59·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3380\)    =    \(2^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(26.9894\)
Root analytic conductor: \(5.19513\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3380,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.703707426\)
\(L(\frac12)\) \(\approx\) \(1.703707426\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 1.35T + 3T^{2} \)
7 \( 1 + 4.17T + 7T^{2} \)
11 \( 1 - 5.52T + 11T^{2} \)
17 \( 1 + 0.703T + 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 + 2.64T + 23T^{2} \)
29 \( 1 - 8.17T + 29T^{2} \)
31 \( 1 - 9.52T + 31T^{2} \)
37 \( 1 - 6.87T + 37T^{2} \)
41 \( 1 + 0.703T + 41T^{2} \)
43 \( 1 + 1.35T + 43T^{2} \)
47 \( 1 - 8.17T + 47T^{2} \)
53 \( 1 - 5.04T + 53T^{2} \)
59 \( 1 - 12.2T + 59T^{2} \)
61 \( 1 + 0.172T + 61T^{2} \)
67 \( 1 + 10.8T + 67T^{2} \)
71 \( 1 - 5.52T + 71T^{2} \)
73 \( 1 - 11.2T + 73T^{2} \)
79 \( 1 - 1.29T + 79T^{2} \)
83 \( 1 - 9.58T + 83T^{2} \)
89 \( 1 + 11.7T + 89T^{2} \)
97 \( 1 + 18.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.568079469478263629895008046682, −8.173667052002051144160130316917, −6.90869231036347787382890857156, −6.50032123579405634398691375192, −5.91171560959464989695298085287, −4.34092436391256420509672478062, −3.92374089280354278185285044869, −3.03361506768683978769037860438, −2.32938245388341686087532019388, −0.72689880789068216474831980353, 0.72689880789068216474831980353, 2.32938245388341686087532019388, 3.03361506768683978769037860438, 3.92374089280354278185285044869, 4.34092436391256420509672478062, 5.91171560959464989695298085287, 6.50032123579405634398691375192, 6.90869231036347787382890857156, 8.173667052002051144160130316917, 8.568079469478263629895008046682

Graph of the $Z$-function along the critical line