L(s) = 1 | + (−1.73 + i)2-s + (−2.93 − 5.07i)3-s + (1.99 − 3.46i)4-s + 10.8i·5-s + (10.1 + 5.86i)6-s + (25.8 + 14.9i)7-s + 7.99i·8-s + (−3.70 + 6.41i)9-s + (−10.8 − 18.8i)10-s + (−42.4 + 24.5i)11-s − 23.4·12-s − 59.7·14-s + (55.1 − 31.8i)15-s + (−8 − 13.8i)16-s + (−3.03 + 5.26i)17-s − 14.8i·18-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.564 − 0.977i)3-s + (0.249 − 0.433i)4-s + 0.971i·5-s + (0.691 + 0.399i)6-s + (1.39 + 0.806i)7-s + 0.353i·8-s + (−0.137 + 0.237i)9-s + (−0.343 − 0.595i)10-s + (−1.16 + 0.672i)11-s − 0.564·12-s − 1.14·14-s + (0.950 − 0.548i)15-s + (−0.125 − 0.216i)16-s + (−0.0433 + 0.0750i)17-s − 0.193i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(−0.711−0.702i)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)(−0.711−0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
−0.711−0.702i
|
Analytic conductor: |
19.9426 |
Root analytic conductor: |
4.46571 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :3/2), −0.711−0.702i)
|
Particular Values
L(2) |
≈ |
0.6042972460 |
L(21) |
≈ |
0.6042972460 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.73−i)T |
| 13 | 1 |
good | 3 | 1+(2.93+5.07i)T+(−13.5+23.3i)T2 |
| 5 | 1−10.8iT−125T2 |
| 7 | 1+(−25.8−14.9i)T+(171.5+297.i)T2 |
| 11 | 1+(42.4−24.5i)T+(665.5−1.15e3i)T2 |
| 17 | 1+(3.03−5.26i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(5.07+2.93i)T+(3.42e3+5.94e3i)T2 |
| 23 | 1+(2.79+4.84i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−5.30−9.19i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+316.iT−2.97e4T2 |
| 37 | 1+(329.−190.i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+(232.−134.i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(115.−199.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1−524.iT−1.03e5T2 |
| 53 | 1+274.T+1.48e5T2 |
| 59 | 1+(−123.−71.4i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(281.−487.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−448.+258.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1+(125.+72.2i)T+(1.78e5+3.09e5i)T2 |
| 73 | 1+201.iT−3.89e5T2 |
| 79 | 1−26.4T+4.93e5T2 |
| 83 | 1−1.14e3iT−5.71e5T2 |
| 89 | 1+(574.−331.i)T+(3.52e5−6.10e5i)T2 |
| 97 | 1+(119.+68.7i)T+(4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37690849673476749156409897922, −10.71223312194888490670458260373, −9.642771519617851776243009953700, −8.249900850935379421073010405436, −7.67489688508020098937801761552, −6.80798478120333860250745644543, −5.85912776532393590769076584373, −4.85933886771107384621629355604, −2.56869791771865697359717370465, −1.56438903509914293313333928009,
0.28402074319882111555355107042, 1.68513244868644053956339535474, 3.67154642900045509086949414952, 4.94161860972544974853277685720, 5.23961519272080087661580952661, 7.20440514524411438138712463491, 8.266993607448287654165908902305, 8.804599725498628315869561067805, 10.23017471616967562864269975196, 10.60294341017151400034548232749