L(s) = 1 | + (−1.73 + i)2-s + (−2.93 − 5.07i)3-s + (1.99 − 3.46i)4-s + 10.8i·5-s + (10.1 + 5.86i)6-s + (25.8 + 14.9i)7-s + 7.99i·8-s + (−3.70 + 6.41i)9-s + (−10.8 − 18.8i)10-s + (−42.4 + 24.5i)11-s − 23.4·12-s − 59.7·14-s + (55.1 − 31.8i)15-s + (−8 − 13.8i)16-s + (−3.03 + 5.26i)17-s − 14.8i·18-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.564 − 0.977i)3-s + (0.249 − 0.433i)4-s + 0.971i·5-s + (0.691 + 0.399i)6-s + (1.39 + 0.806i)7-s + 0.353i·8-s + (−0.137 + 0.237i)9-s + (−0.343 − 0.595i)10-s + (−1.16 + 0.672i)11-s − 0.564·12-s − 1.14·14-s + (0.950 − 0.548i)15-s + (−0.125 − 0.216i)16-s + (−0.0433 + 0.0750i)17-s − 0.193i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 - 0.702i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6042972460\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6042972460\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.73 - i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (2.93 + 5.07i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 10.8iT - 125T^{2} \) |
| 7 | \( 1 + (-25.8 - 14.9i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (42.4 - 24.5i)T + (665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (3.03 - 5.26i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (5.07 + 2.93i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (2.79 + 4.84i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-5.30 - 9.19i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 316. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (329. - 190. i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (232. - 134. i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (115. - 199. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 524. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 274.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-123. - 71.4i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (281. - 487. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-448. + 258. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (125. + 72.2i)T + (1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 201. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 26.4T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.14e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (574. - 331. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (119. + 68.7i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37690849673476749156409897922, −10.71223312194888490670458260373, −9.642771519617851776243009953700, −8.249900850935379421073010405436, −7.67489688508020098937801761552, −6.80798478120333860250745644543, −5.85912776532393590769076584373, −4.85933886771107384621629355604, −2.56869791771865697359717370465, −1.56438903509914293313333928009,
0.28402074319882111555355107042, 1.68513244868644053956339535474, 3.67154642900045509086949414952, 4.94161860972544974853277685720, 5.23961519272080087661580952661, 7.20440514524411438138712463491, 8.266993607448287654165908902305, 8.804599725498628315869561067805, 10.23017471616967562864269975196, 10.60294341017151400034548232749