Properties

Label 2-338-1.1-c9-0-3
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $174.082$
Root an. cond. $13.1940$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s − 34.9·3-s + 256·4-s − 530.·5-s − 559.·6-s − 1.22e4·7-s + 4.09e3·8-s − 1.84e4·9-s − 8.48e3·10-s − 5.23e4·11-s − 8.95e3·12-s − 1.95e5·14-s + 1.85e4·15-s + 6.55e4·16-s + 5.23e5·17-s − 2.95e5·18-s − 8.13e5·19-s − 1.35e5·20-s + 4.28e5·21-s − 8.37e5·22-s − 7.50e5·23-s − 1.43e5·24-s − 1.67e6·25-s + 1.33e6·27-s − 3.13e6·28-s − 5.53e6·29-s + 2.96e5·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.249·3-s + 0.5·4-s − 0.379·5-s − 0.176·6-s − 1.92·7-s + 0.353·8-s − 0.937·9-s − 0.268·10-s − 1.07·11-s − 0.124·12-s − 1.36·14-s + 0.0946·15-s + 0.250·16-s + 1.52·17-s − 0.663·18-s − 1.43·19-s − 0.189·20-s + 0.480·21-s − 0.761·22-s − 0.558·23-s − 0.0881·24-s − 0.856·25-s + 0.483·27-s − 0.963·28-s − 1.45·29-s + 0.0669·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(174.082\)
Root analytic conductor: \(13.1940\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.1344154368\)
\(L(\frac12)\) \(\approx\) \(0.1344154368\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
13 \( 1 \)
good3 \( 1 + 34.9T + 1.96e4T^{2} \)
5 \( 1 + 530.T + 1.95e6T^{2} \)
7 \( 1 + 1.22e4T + 4.03e7T^{2} \)
11 \( 1 + 5.23e4T + 2.35e9T^{2} \)
17 \( 1 - 5.23e5T + 1.18e11T^{2} \)
19 \( 1 + 8.13e5T + 3.22e11T^{2} \)
23 \( 1 + 7.50e5T + 1.80e12T^{2} \)
29 \( 1 + 5.53e6T + 1.45e13T^{2} \)
31 \( 1 + 7.99e6T + 2.64e13T^{2} \)
37 \( 1 + 2.25e7T + 1.29e14T^{2} \)
41 \( 1 + 1.72e7T + 3.27e14T^{2} \)
43 \( 1 - 3.16e7T + 5.02e14T^{2} \)
47 \( 1 - 5.28e6T + 1.11e15T^{2} \)
53 \( 1 + 2.36e7T + 3.29e15T^{2} \)
59 \( 1 + 7.54e6T + 8.66e15T^{2} \)
61 \( 1 + 3.30e7T + 1.16e16T^{2} \)
67 \( 1 - 1.47e7T + 2.72e16T^{2} \)
71 \( 1 - 2.48e8T + 4.58e16T^{2} \)
73 \( 1 + 9.00e7T + 5.88e16T^{2} \)
79 \( 1 + 1.92e8T + 1.19e17T^{2} \)
83 \( 1 + 1.35e8T + 1.86e17T^{2} \)
89 \( 1 - 5.60e8T + 3.50e17T^{2} \)
97 \( 1 - 4.24e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20906747566839891598445208423, −9.162047261119402300505411435295, −7.941890488781273245435628113449, −6.98283060725489290629793645671, −5.88754493414919385383296124241, −5.47522307407225278786007706604, −3.78890171142248074649895493944, −3.25847839685020593392624469673, −2.16302754223686635340987651118, −0.13054512813957992944594851539, 0.13054512813957992944594851539, 2.16302754223686635340987651118, 3.25847839685020593392624469673, 3.78890171142248074649895493944, 5.47522307407225278786007706604, 5.88754493414919385383296124241, 6.98283060725489290629793645671, 7.941890488781273245435628113449, 9.162047261119402300505411435295, 10.20906747566839891598445208423

Graph of the $Z$-function along the critical line