L(s) = 1 | − 8·2-s − 71.1·3-s + 64·4-s + 523.·5-s + 569.·6-s − 416.·7-s − 512·8-s + 2.87e3·9-s − 4.18e3·10-s + 3.42e3·11-s − 4.55e3·12-s + 3.33e3·14-s − 3.72e4·15-s + 4.09e3·16-s − 6.53e3·17-s − 2.30e4·18-s + 2.79e4·19-s + 3.35e4·20-s + 2.96e4·21-s − 2.73e4·22-s + 1.06e5·23-s + 3.64e4·24-s + 1.95e5·25-s − 4.90e4·27-s − 2.66e4·28-s + 6.85e4·29-s + 2.98e5·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.52·3-s + 0.5·4-s + 1.87·5-s + 1.07·6-s − 0.459·7-s − 0.353·8-s + 1.31·9-s − 1.32·10-s + 0.775·11-s − 0.760·12-s + 0.324·14-s − 2.84·15-s + 0.250·16-s − 0.322·17-s − 0.930·18-s + 0.935·19-s + 0.936·20-s + 0.698·21-s − 0.548·22-s + 1.81·23-s + 0.537·24-s + 2.50·25-s − 0.479·27-s − 0.229·28-s + 0.521·29-s + 2.01·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(338s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
1.499747173 |
L(21) |
≈ |
1.499747173 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 13 | 1 |
good | 3 | 1+71.1T+2.18e3T2 |
| 5 | 1−523.T+7.81e4T2 |
| 7 | 1+416.T+8.23e5T2 |
| 11 | 1−3.42e3T+1.94e7T2 |
| 17 | 1+6.53e3T+4.10e8T2 |
| 19 | 1−2.79e4T+8.93e8T2 |
| 23 | 1−1.06e5T+3.40e9T2 |
| 29 | 1−6.85e4T+1.72e10T2 |
| 31 | 1−5.15e4T+2.75e10T2 |
| 37 | 1−4.81e4T+9.49e10T2 |
| 41 | 1+6.02e5T+1.94e11T2 |
| 43 | 1−9.16e5T+2.71e11T2 |
| 47 | 1+3.26e5T+5.06e11T2 |
| 53 | 1−9.34e5T+1.17e12T2 |
| 59 | 1−1.17e6T+2.48e12T2 |
| 61 | 1+2.89e6T+3.14e12T2 |
| 67 | 1−3.18e5T+6.06e12T2 |
| 71 | 1−1.28e6T+9.09e12T2 |
| 73 | 1+1.67e6T+1.10e13T2 |
| 79 | 1+8.09e6T+1.92e13T2 |
| 83 | 1−5.57e6T+2.71e13T2 |
| 89 | 1−7.87e6T+4.42e13T2 |
| 97 | 1+6.80e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31712903758051365512273099383, −9.563515161715840445579318589154, −8.913614366650806546256328320824, −7.01339613694661659856620335418, −6.46821681891209597350460649470, −5.70975673505344896551169212456, −4.88923701035266010361412830962, −2.87267500947223221718814603193, −1.47826896211398055483076364582, −0.77963620483203718354731703557,
0.77963620483203718354731703557, 1.47826896211398055483076364582, 2.87267500947223221718814603193, 4.88923701035266010361412830962, 5.70975673505344896551169212456, 6.46821681891209597350460649470, 7.01339613694661659856620335418, 8.913614366650806546256328320824, 9.563515161715840445579318589154, 10.31712903758051365512273099383