L(s) = 1 | − 4·2-s + 4·3-s + 16·4-s − 68·5-s − 16·6-s + 82·7-s − 64·8-s − 227·9-s + 272·10-s + 390·11-s + 64·12-s − 328·14-s − 272·15-s + 256·16-s − 1.73e3·17-s + 908·18-s + 1.07e3·19-s − 1.08e3·20-s + 328·21-s − 1.56e3·22-s − 2.10e3·23-s − 256·24-s + 1.49e3·25-s − 1.88e3·27-s + 1.31e3·28-s − 1.69e3·29-s + 1.08e3·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.256·3-s + 1/2·4-s − 1.21·5-s − 0.181·6-s + 0.632·7-s − 0.353·8-s − 0.934·9-s + 0.860·10-s + 0.971·11-s + 0.128·12-s − 0.447·14-s − 0.312·15-s + 1/4·16-s − 1.45·17-s + 0.660·18-s + 0.682·19-s − 0.608·20-s + 0.162·21-s − 0.687·22-s − 0.829·23-s − 0.0907·24-s + 0.479·25-s − 0.496·27-s + 0.316·28-s − 0.373·29-s + 0.220·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(338s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.9754766409 |
L(21) |
≈ |
0.9754766409 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 13 | 1 |
good | 3 | 1−4T+p5T2 |
| 5 | 1+68T+p5T2 |
| 7 | 1−82T+p5T2 |
| 11 | 1−390T+p5T2 |
| 17 | 1+1738T+p5T2 |
| 19 | 1−1074T+p5T2 |
| 23 | 1+2104T+p5T2 |
| 29 | 1+1690T+p5T2 |
| 31 | 1−1430T+p5T2 |
| 37 | 1−8852T+p5T2 |
| 41 | 1+6760T+p5T2 |
| 43 | 1−16916T+p5T2 |
| 47 | 1+25158T+p5T2 |
| 53 | 1−38214T+p5T2 |
| 59 | 1−21286T+p5T2 |
| 61 | 1+5458T+p5T2 |
| 67 | 1+44542T+p5T2 |
| 71 | 1−17790T+p5T2 |
| 73 | 1−31064T+p5T2 |
| 79 | 1+45360T+p5T2 |
| 83 | 1−124546T+p5T2 |
| 89 | 1+18744T+p5T2 |
| 97 | 1−121488T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95765132372656315009809653338, −9.562017649552566375919476184828, −8.672433550967950536623230641817, −8.080597551754881335109033869998, −7.18380258388319021430183366841, −6.04965797397424007708346045658, −4.52505307535669163523688403516, −3.48827405918081510715783656158, −2.10118700321670276952613171745, −0.58144755990398679628433328036,
0.58144755990398679628433328036, 2.10118700321670276952613171745, 3.48827405918081510715783656158, 4.52505307535669163523688403516, 6.04965797397424007708346045658, 7.18380258388319021430183366841, 8.080597551754881335109033869998, 8.672433550967950536623230641817, 9.562017649552566375919476184828, 10.95765132372656315009809653338