Properties

Label 2-338-1.1-c3-0-9
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $19.9426$
Root an. cond. $4.46571$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 8.14·3-s + 4·4-s + 12.6·5-s + 16.2·6-s + 28.7·7-s − 8·8-s + 39.3·9-s − 25.3·10-s + 52.8·11-s − 32.5·12-s − 57.5·14-s − 103.·15-s + 16·16-s + 71.0·17-s − 78.7·18-s − 65.7·19-s + 50.6·20-s − 234.·21-s − 105.·22-s − 44.4·23-s + 65.1·24-s + 35.3·25-s − 100.·27-s + 115.·28-s − 78.4·29-s + 206.·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.56·3-s + 0.5·4-s + 1.13·5-s + 1.10·6-s + 1.55·7-s − 0.353·8-s + 1.45·9-s − 0.800·10-s + 1.44·11-s − 0.784·12-s − 1.09·14-s − 1.77·15-s + 0.250·16-s + 1.01·17-s − 1.03·18-s − 0.794·19-s + 0.566·20-s − 2.43·21-s − 1.02·22-s − 0.402·23-s + 0.554·24-s + 0.283·25-s − 0.719·27-s + 0.776·28-s − 0.502·29-s + 1.25·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.9426\)
Root analytic conductor: \(4.46571\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.300951608\)
\(L(\frac12)\) \(\approx\) \(1.300951608\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
13 \( 1 \)
good3 \( 1 + 8.14T + 27T^{2} \)
5 \( 1 - 12.6T + 125T^{2} \)
7 \( 1 - 28.7T + 343T^{2} \)
11 \( 1 - 52.8T + 1.33e3T^{2} \)
17 \( 1 - 71.0T + 4.91e3T^{2} \)
19 \( 1 + 65.7T + 6.85e3T^{2} \)
23 \( 1 + 44.4T + 1.21e4T^{2} \)
29 \( 1 + 78.4T + 2.43e4T^{2} \)
31 \( 1 - 195.T + 2.97e4T^{2} \)
37 \( 1 + 233.T + 5.06e4T^{2} \)
41 \( 1 + 120.T + 6.89e4T^{2} \)
43 \( 1 - 405.T + 7.95e4T^{2} \)
47 \( 1 - 400.T + 1.03e5T^{2} \)
53 \( 1 - 116.T + 1.48e5T^{2} \)
59 \( 1 + 781.T + 2.05e5T^{2} \)
61 \( 1 - 52.5T + 2.26e5T^{2} \)
67 \( 1 - 805.T + 3.00e5T^{2} \)
71 \( 1 - 401.T + 3.57e5T^{2} \)
73 \( 1 + 323.T + 3.89e5T^{2} \)
79 \( 1 + 794.T + 4.93e5T^{2} \)
83 \( 1 + 444.T + 5.71e5T^{2} \)
89 \( 1 + 79.1T + 7.04e5T^{2} \)
97 \( 1 + 3.89T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03020130807953683191247792347, −10.36455951970622868470413873965, −9.449383065648710418690852591542, −8.365904625949980666499908274045, −7.12068216186550186770945567698, −6.12330025802612361833090414777, −5.50480634987000672953430321126, −4.34243423991075556427195790885, −1.85151054322463600776368006137, −1.03028320616562102177409529056, 1.03028320616562102177409529056, 1.85151054322463600776368006137, 4.34243423991075556427195790885, 5.50480634987000672953430321126, 6.12330025802612361833090414777, 7.12068216186550186770945567698, 8.365904625949980666499908274045, 9.449383065648710418690852591542, 10.36455951970622868470413873965, 11.03020130807953683191247792347

Graph of the $Z$-function along the critical line