L(s) = 1 | − 2·2-s − 8.14·3-s + 4·4-s + 12.6·5-s + 16.2·6-s + 28.7·7-s − 8·8-s + 39.3·9-s − 25.3·10-s + 52.8·11-s − 32.5·12-s − 57.5·14-s − 103.·15-s + 16·16-s + 71.0·17-s − 78.7·18-s − 65.7·19-s + 50.6·20-s − 234.·21-s − 105.·22-s − 44.4·23-s + 65.1·24-s + 35.3·25-s − 100.·27-s + 115.·28-s − 78.4·29-s + 206.·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.56·3-s + 0.5·4-s + 1.13·5-s + 1.10·6-s + 1.55·7-s − 0.353·8-s + 1.45·9-s − 0.800·10-s + 1.44·11-s − 0.784·12-s − 1.09·14-s − 1.77·15-s + 0.250·16-s + 1.01·17-s − 1.03·18-s − 0.794·19-s + 0.566·20-s − 2.43·21-s − 1.02·22-s − 0.402·23-s + 0.554·24-s + 0.283·25-s − 0.719·27-s + 0.776·28-s − 0.502·29-s + 1.25·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.300951608 |
L(21) |
≈ |
1.300951608 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 13 | 1 |
good | 3 | 1+8.14T+27T2 |
| 5 | 1−12.6T+125T2 |
| 7 | 1−28.7T+343T2 |
| 11 | 1−52.8T+1.33e3T2 |
| 17 | 1−71.0T+4.91e3T2 |
| 19 | 1+65.7T+6.85e3T2 |
| 23 | 1+44.4T+1.21e4T2 |
| 29 | 1+78.4T+2.43e4T2 |
| 31 | 1−195.T+2.97e4T2 |
| 37 | 1+233.T+5.06e4T2 |
| 41 | 1+120.T+6.89e4T2 |
| 43 | 1−405.T+7.95e4T2 |
| 47 | 1−400.T+1.03e5T2 |
| 53 | 1−116.T+1.48e5T2 |
| 59 | 1+781.T+2.05e5T2 |
| 61 | 1−52.5T+2.26e5T2 |
| 67 | 1−805.T+3.00e5T2 |
| 71 | 1−401.T+3.57e5T2 |
| 73 | 1+323.T+3.89e5T2 |
| 79 | 1+794.T+4.93e5T2 |
| 83 | 1+444.T+5.71e5T2 |
| 89 | 1+79.1T+7.04e5T2 |
| 97 | 1+3.89T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03020130807953683191247792347, −10.36455951970622868470413873965, −9.449383065648710418690852591542, −8.365904625949980666499908274045, −7.12068216186550186770945567698, −6.12330025802612361833090414777, −5.50480634987000672953430321126, −4.34243423991075556427195790885, −1.85151054322463600776368006137, −1.03028320616562102177409529056,
1.03028320616562102177409529056, 1.85151054322463600776368006137, 4.34243423991075556427195790885, 5.50480634987000672953430321126, 6.12330025802612361833090414777, 7.12068216186550186770945567698, 8.365904625949980666499908274045, 9.449383065648710418690852591542, 10.36455951970622868470413873965, 11.03020130807953683191247792347