L(s) = 1 | − 2·2-s + 0.405·3-s + 4·4-s + 6.36·5-s − 0.811·6-s − 2.55·7-s − 8·8-s − 26.8·9-s − 12.7·10-s + 26.1·11-s + 1.62·12-s + 5.10·14-s + 2.58·15-s + 16·16-s − 93.7·17-s + 53.6·18-s − 37.2·19-s + 25.4·20-s − 1.03·21-s − 52.2·22-s − 104.·23-s − 3.24·24-s − 84.5·25-s − 21.8·27-s − 10.2·28-s + 249.·29-s − 5.16·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.0780·3-s + 0.5·4-s + 0.569·5-s − 0.0552·6-s − 0.137·7-s − 0.353·8-s − 0.993·9-s − 0.402·10-s + 0.715·11-s + 0.0390·12-s + 0.0973·14-s + 0.0444·15-s + 0.250·16-s − 1.33·17-s + 0.702·18-s − 0.449·19-s + 0.284·20-s − 0.0107·21-s − 0.506·22-s − 0.951·23-s − 0.0276·24-s − 0.676·25-s − 0.155·27-s − 0.0688·28-s + 1.59·29-s − 0.0314·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 13 | 1 |
good | 3 | 1−0.405T+27T2 |
| 5 | 1−6.36T+125T2 |
| 7 | 1+2.55T+343T2 |
| 11 | 1−26.1T+1.33e3T2 |
| 17 | 1+93.7T+4.91e3T2 |
| 19 | 1+37.2T+6.85e3T2 |
| 23 | 1+104.T+1.21e4T2 |
| 29 | 1−249.T+2.43e4T2 |
| 31 | 1−278.T+2.97e4T2 |
| 37 | 1+10.9T+5.06e4T2 |
| 41 | 1+371.T+6.89e4T2 |
| 43 | 1+413.T+7.95e4T2 |
| 47 | 1−238.T+1.03e5T2 |
| 53 | 1+424.T+1.48e5T2 |
| 59 | 1+774.T+2.05e5T2 |
| 61 | 1+123.T+2.26e5T2 |
| 67 | 1+881.T+3.00e5T2 |
| 71 | 1−118.T+3.57e5T2 |
| 73 | 1−209.T+3.89e5T2 |
| 79 | 1+532.T+4.93e5T2 |
| 83 | 1+376.T+5.71e5T2 |
| 89 | 1−42.6T+7.04e5T2 |
| 97 | 1−639.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48507400452114034455344179041, −9.688010731060488302240715097642, −8.742054684412510920450851833998, −8.139381257562754021363752272394, −6.58389709471778843864988520433, −6.14345367119653406161522408975, −4.59548535936550969534478016969, −2.99076026862635851518010660339, −1.78465533015960456163356550174, 0,
1.78465533015960456163356550174, 2.99076026862635851518010660339, 4.59548535936550969534478016969, 6.14345367119653406161522408975, 6.58389709471778843864988520433, 8.139381257562754021363752272394, 8.742054684412510920450851833998, 9.688010731060488302240715097642, 10.48507400452114034455344179041