L(s) = 1 | − 2·2-s − 3.92·3-s + 4·4-s + 0.152·5-s + 7.85·6-s − 33.9·7-s − 8·8-s − 11.5·9-s − 0.305·10-s + 10.5·11-s − 15.7·12-s + 67.9·14-s − 0.600·15-s + 16·16-s − 41.3·17-s + 23.1·18-s − 131.·19-s + 0.611·20-s + 133.·21-s − 21.0·22-s + 161.·23-s + 31.4·24-s − 124.·25-s + 151.·27-s − 135.·28-s − 35.6·29-s + 1.20·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.755·3-s + 0.5·4-s + 0.0136·5-s + 0.534·6-s − 1.83·7-s − 0.353·8-s − 0.428·9-s − 0.00966·10-s + 0.288·11-s − 0.377·12-s + 1.29·14-s − 0.0103·15-s + 0.250·16-s − 0.589·17-s + 0.303·18-s − 1.58·19-s + 0.00683·20-s + 1.38·21-s − 0.204·22-s + 1.46·23-s + 0.267·24-s − 0.999·25-s + 1.07·27-s − 0.917·28-s − 0.227·29-s + 0.00730·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3869580341 |
L(21) |
≈ |
0.3869580341 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 13 | 1 |
good | 3 | 1+3.92T+27T2 |
| 5 | 1−0.152T+125T2 |
| 7 | 1+33.9T+343T2 |
| 11 | 1−10.5T+1.33e3T2 |
| 17 | 1+41.3T+4.91e3T2 |
| 19 | 1+131.T+6.85e3T2 |
| 23 | 1−161.T+1.21e4T2 |
| 29 | 1+35.6T+2.43e4T2 |
| 31 | 1+12.7T+2.97e4T2 |
| 37 | 1+183.T+5.06e4T2 |
| 41 | 1+443.T+6.89e4T2 |
| 43 | 1−466.T+7.95e4T2 |
| 47 | 1−282.T+1.03e5T2 |
| 53 | 1−114.T+1.48e5T2 |
| 59 | 1−703.T+2.05e5T2 |
| 61 | 1−600.T+2.26e5T2 |
| 67 | 1−542.T+3.00e5T2 |
| 71 | 1+907.T+3.57e5T2 |
| 73 | 1−498.T+3.89e5T2 |
| 79 | 1+356.T+4.93e5T2 |
| 83 | 1−934.T+5.71e5T2 |
| 89 | 1−581.T+7.04e5T2 |
| 97 | 1+334.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92962701016954645093673092311, −10.25578724325014370807910245186, −9.244435875527658408003966361508, −8.587604786426500736412597466496, −6.95708181118247005341886598230, −6.47777420604391620635191641724, −5.52709357529250059901980916223, −3.80783396679750249252387123125, −2.50553495336628906387022987414, −0.45547467819414588104636695648,
0.45547467819414588104636695648, 2.50553495336628906387022987414, 3.80783396679750249252387123125, 5.52709357529250059901980916223, 6.47777420604391620635191641724, 6.95708181118247005341886598230, 8.587604786426500736412597466496, 9.244435875527658408003966361508, 10.25578724325014370807910245186, 10.92962701016954645093673092311