Properties

Label 2-338-1.1-c3-0-1
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $19.9426$
Root an. cond. $4.46571$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3.92·3-s + 4·4-s + 0.152·5-s + 7.85·6-s − 33.9·7-s − 8·8-s − 11.5·9-s − 0.305·10-s + 10.5·11-s − 15.7·12-s + 67.9·14-s − 0.600·15-s + 16·16-s − 41.3·17-s + 23.1·18-s − 131.·19-s + 0.611·20-s + 133.·21-s − 21.0·22-s + 161.·23-s + 31.4·24-s − 124.·25-s + 151.·27-s − 135.·28-s − 35.6·29-s + 1.20·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.755·3-s + 0.5·4-s + 0.0136·5-s + 0.534·6-s − 1.83·7-s − 0.353·8-s − 0.428·9-s − 0.00966·10-s + 0.288·11-s − 0.377·12-s + 1.29·14-s − 0.0103·15-s + 0.250·16-s − 0.589·17-s + 0.303·18-s − 1.58·19-s + 0.00683·20-s + 1.38·21-s − 0.204·22-s + 1.46·23-s + 0.267·24-s − 0.999·25-s + 1.07·27-s − 0.917·28-s − 0.227·29-s + 0.00730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.9426\)
Root analytic conductor: \(4.46571\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3869580341\)
\(L(\frac12)\) \(\approx\) \(0.3869580341\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
13 \( 1 \)
good3 \( 1 + 3.92T + 27T^{2} \)
5 \( 1 - 0.152T + 125T^{2} \)
7 \( 1 + 33.9T + 343T^{2} \)
11 \( 1 - 10.5T + 1.33e3T^{2} \)
17 \( 1 + 41.3T + 4.91e3T^{2} \)
19 \( 1 + 131.T + 6.85e3T^{2} \)
23 \( 1 - 161.T + 1.21e4T^{2} \)
29 \( 1 + 35.6T + 2.43e4T^{2} \)
31 \( 1 + 12.7T + 2.97e4T^{2} \)
37 \( 1 + 183.T + 5.06e4T^{2} \)
41 \( 1 + 443.T + 6.89e4T^{2} \)
43 \( 1 - 466.T + 7.95e4T^{2} \)
47 \( 1 - 282.T + 1.03e5T^{2} \)
53 \( 1 - 114.T + 1.48e5T^{2} \)
59 \( 1 - 703.T + 2.05e5T^{2} \)
61 \( 1 - 600.T + 2.26e5T^{2} \)
67 \( 1 - 542.T + 3.00e5T^{2} \)
71 \( 1 + 907.T + 3.57e5T^{2} \)
73 \( 1 - 498.T + 3.89e5T^{2} \)
79 \( 1 + 356.T + 4.93e5T^{2} \)
83 \( 1 - 934.T + 5.71e5T^{2} \)
89 \( 1 - 581.T + 7.04e5T^{2} \)
97 \( 1 + 334.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92962701016954645093673092311, −10.25578724325014370807910245186, −9.244435875527658408003966361508, −8.587604786426500736412597466496, −6.95708181118247005341886598230, −6.47777420604391620635191641724, −5.52709357529250059901980916223, −3.80783396679750249252387123125, −2.50553495336628906387022987414, −0.45547467819414588104636695648, 0.45547467819414588104636695648, 2.50553495336628906387022987414, 3.80783396679750249252387123125, 5.52709357529250059901980916223, 6.47777420604391620635191641724, 6.95708181118247005341886598230, 8.587604786426500736412597466496, 9.244435875527658408003966361508, 10.25578724325014370807910245186, 10.92962701016954645093673092311

Graph of the $Z$-function along the critical line