Properties

Label 2-338-1.1-c1-0-6
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $2.69894$
Root an. cond. $1.64284$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.69·3-s + 4-s + 2.49·5-s − 2.69·6-s − 1.60·7-s − 8-s + 4.24·9-s − 2.49·10-s + 2.04·11-s + 2.69·12-s + 1.60·14-s + 6.71·15-s + 16-s − 4.54·17-s − 4.24·18-s − 4.85·19-s + 2.49·20-s − 4.31·21-s − 2.04·22-s + 2.71·23-s − 2.69·24-s + 1.21·25-s + 3.35·27-s − 1.60·28-s − 9.20·29-s − 6.71·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.55·3-s + 0.5·4-s + 1.11·5-s − 1.09·6-s − 0.606·7-s − 0.353·8-s + 1.41·9-s − 0.788·10-s + 0.617·11-s + 0.777·12-s + 0.428·14-s + 1.73·15-s + 0.250·16-s − 1.10·17-s − 1.00·18-s − 1.11·19-s + 0.557·20-s − 0.942·21-s − 0.436·22-s + 0.565·23-s − 0.549·24-s + 0.243·25-s + 0.646·27-s − 0.303·28-s − 1.70·29-s − 1.22·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2.69894\)
Root analytic conductor: \(1.64284\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.742006079\)
\(L(\frac12)\) \(\approx\) \(1.742006079\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2.69T + 3T^{2} \)
5 \( 1 - 2.49T + 5T^{2} \)
7 \( 1 + 1.60T + 7T^{2} \)
11 \( 1 - 2.04T + 11T^{2} \)
17 \( 1 + 4.54T + 17T^{2} \)
19 \( 1 + 4.85T + 19T^{2} \)
23 \( 1 - 2.71T + 23T^{2} \)
29 \( 1 + 9.20T + 29T^{2} \)
31 \( 1 - 5.10T + 31T^{2} \)
37 \( 1 - 7.60T + 37T^{2} \)
41 \( 1 + 3.46T + 41T^{2} \)
43 \( 1 - 11.3T + 43T^{2} \)
47 \( 1 - 0.219T + 47T^{2} \)
53 \( 1 + 2.71T + 53T^{2} \)
59 \( 1 + 4.07T + 59T^{2} \)
61 \( 1 - 10.4T + 61T^{2} \)
67 \( 1 + 12.0T + 67T^{2} \)
71 \( 1 - 1.28T + 71T^{2} \)
73 \( 1 - 3.62T + 73T^{2} \)
79 \( 1 + 5.32T + 79T^{2} \)
83 \( 1 - 4.85T + 83T^{2} \)
89 \( 1 + 16.5T + 89T^{2} \)
97 \( 1 - 4.64T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27544072861475689311619612923, −10.21169053678005845976424476082, −9.271315054689697286832554069889, −9.124183720497808064025075784833, −8.032097583245981141471144508013, −6.89531212031146585363038881931, −6.03626399448508789783736714976, −4.12473728616083118300334546827, −2.75664713130300424803391274565, −1.86995629665135213307745984822, 1.86995629665135213307745984822, 2.75664713130300424803391274565, 4.12473728616083118300334546827, 6.03626399448508789783736714976, 6.89531212031146585363038881931, 8.032097583245981141471144508013, 9.124183720497808064025075784833, 9.271315054689697286832554069889, 10.21169053678005845976424476082, 11.27544072861475689311619612923

Graph of the $Z$-function along the critical line