L(s) = 1 | + (0.382 − 0.923i)3-s + (0.382 − 0.923i)5-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)9-s + (−1.30 − 1.30i)13-s + (−0.707 − 0.707i)15-s − 0.765i·19-s + (0.382 + 0.923i)21-s + (−1 + i)23-s + (−0.707 − 0.707i)25-s + (−0.923 + 0.382i)27-s + (0.382 + 0.923i)35-s + (−1.70 + 0.707i)39-s + (−0.923 + 0.382i)45-s − 1.00i·49-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)3-s + (0.382 − 0.923i)5-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)9-s + (−1.30 − 1.30i)13-s + (−0.707 − 0.707i)15-s − 0.765i·19-s + (0.382 + 0.923i)21-s + (−1 + i)23-s + (−0.707 − 0.707i)25-s + (−0.923 + 0.382i)27-s + (0.382 + 0.923i)35-s + (−1.70 + 0.707i)39-s + (−0.923 + 0.382i)45-s − 1.00i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8809963272\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8809963272\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
good | 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + 0.765iT - T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + 0.765T + T^{2} \) |
| 61 | \( 1 - 1.84T + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + 1.41iT - T^{2} \) |
| 83 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.379954362573332187573700168137, −7.79625855899921417127556118416, −7.06773381439859358103250311105, −6.09299481778311582799073631086, −5.57527701464035414065763250527, −4.82641110205460797884850059785, −3.48060568041013044083468479434, −2.64455850369572046137065960068, −1.88016560052046086808786165243, −0.44975563607529380306180208946,
2.07791087825325673859182953490, 2.76303946059306675947502956107, 3.80189580948706992139046807584, 4.26778430824464556279750274449, 5.29806775247541127164966108816, 6.26021945969318893011993531049, 6.87885949617520292903665412353, 7.60396368388938306965773854533, 8.466659907264580366414160900812, 9.489648348613677903659007160616