L(s) = 1 | − 3-s + (−0.836 + 2.07i)5-s + i·7-s + 9-s + 5.53i·11-s − 5.75·13-s + (0.836 − 2.07i)15-s − 0.947i·17-s + 8.10i·19-s − i·21-s + 1.91i·23-s + (−3.60 − 3.46i)25-s − 27-s − 2.56i·29-s − 7.22·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.374 + 0.927i)5-s + 0.377i·7-s + 0.333·9-s + 1.67i·11-s − 1.59·13-s + (0.215 − 0.535i)15-s − 0.229i·17-s + 1.85i·19-s − 0.218i·21-s + 0.398i·23-s + (−0.720 − 0.693i)25-s − 0.192·27-s − 0.476i·29-s − 1.29·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.624 + 0.780i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.624 + 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4138862506\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4138862506\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (0.836 - 2.07i)T \) |
| 7 | \( 1 - iT \) |
good | 11 | \( 1 - 5.53iT - 11T^{2} \) |
| 13 | \( 1 + 5.75T + 13T^{2} \) |
| 17 | \( 1 + 0.947iT - 17T^{2} \) |
| 19 | \( 1 - 8.10iT - 19T^{2} \) |
| 23 | \( 1 - 1.91iT - 23T^{2} \) |
| 29 | \( 1 + 2.56iT - 29T^{2} \) |
| 31 | \( 1 + 7.22T + 31T^{2} \) |
| 37 | \( 1 + 0.366T + 37T^{2} \) |
| 41 | \( 1 - 1.45T + 41T^{2} \) |
| 43 | \( 1 - 8.49T + 43T^{2} \) |
| 47 | \( 1 - 5.49iT - 47T^{2} \) |
| 53 | \( 1 - 0.697T + 53T^{2} \) |
| 59 | \( 1 + 13.5iT - 59T^{2} \) |
| 61 | \( 1 - 7.31iT - 61T^{2} \) |
| 67 | \( 1 - 7.12T + 67T^{2} \) |
| 71 | \( 1 + 2.24T + 71T^{2} \) |
| 73 | \( 1 - 10.7iT - 73T^{2} \) |
| 79 | \( 1 - 4.98T + 79T^{2} \) |
| 83 | \( 1 + 7.64T + 83T^{2} \) |
| 89 | \( 1 - 15.9T + 89T^{2} \) |
| 97 | \( 1 + 4.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.449479118877362445389624079665, −8.038410778599167476917884257235, −7.41490272939537264691116297687, −7.07450015724659164250110759673, −6.08804330558877163458502475395, −5.35320097828075860479005562176, −4.49442532884685855888556149061, −3.74461789695514151820492786307, −2.52933223105965983371464978217, −1.83071187393256485528709770631,
0.16845304265403479948434338769, 0.890354331027695390721001327574, 2.38862430436918491790399536348, 3.48737131308004401256905931917, 4.42708567327100522186944100794, 5.10347139685119746568330761879, 5.67486838793791349668480611977, 6.71159595752272319620983133051, 7.39067146895451634888881760961, 8.101200278563526221270943110324