L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + (0.707 + 0.707i)7-s − 1.00i·9-s − 2i·11-s + 1.00·15-s + 1.41·19-s + 1.00·21-s + (−1 + i)23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s − 1.41i·31-s + (−1.41 − 1.41i)33-s + 1.00i·35-s + (−1 + i)37-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + (0.707 + 0.707i)7-s − 1.00i·9-s − 2i·11-s + 1.00·15-s + 1.41·19-s + 1.00·21-s + (−1 + i)23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s − 1.41i·31-s + (−1.41 − 1.41i)33-s + 1.00i·35-s + (−1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.991104968\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.991104968\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - 1.41T + T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.608956398096115462019865173768, −8.041899541064077758813907464240, −7.39112846555302918120087574074, −6.39087913118794477646735364616, −5.83819493397912759768301462543, −5.25295579043266100281683549843, −3.60120471385278982954229769164, −3.12909581580376718754805449807, −2.19899160916245033133772593712, −1.28212902969151264309184622841,
1.58184075994227475910669653191, 2.15857292081030146226679211993, 3.45182512484228446705640322786, 4.46514926603083440223673704098, 4.81486324308612423484243791029, 5.50962031112368883129233106318, 6.88332969107566686491922434992, 7.44069381078504111601238251179, 8.243043971547817568595938021979, 8.901097553089437962288413263904