L(s) = 1 | − 3-s − 5-s − 7-s + 9-s − 2·11-s + 15-s − 6·17-s + 6·19-s + 21-s + 8·23-s + 25-s − 27-s + 6·29-s + 6·31-s + 2·33-s + 35-s − 10·37-s + 2·41-s + 4·43-s − 45-s − 8·47-s + 49-s + 6·51-s − 12·53-s + 2·55-s − 6·57-s − 12·59-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.258·15-s − 1.45·17-s + 1.37·19-s + 0.218·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.07·31-s + 0.348·33-s + 0.169·35-s − 1.64·37-s + 0.312·41-s + 0.609·43-s − 0.149·45-s − 1.16·47-s + 1/7·49-s + 0.840·51-s − 1.64·53-s + 0.269·55-s − 0.794·57-s − 1.56·59-s + ⋯ |
Λ(s)=(=(3360s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3360s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+T |
| 7 | 1+T |
good | 11 | 1+2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.220445638160044929496837312007, −7.37497321130478871197915841208, −6.76360727272757381454020390912, −6.09270049536733414349274513765, −4.92025339438886395369489047888, −4.72916901985484185209248139884, −3.39896233277134585610990366575, −2.71557781749145545205368216765, −1.24960858885676340498672394499, 0,
1.24960858885676340498672394499, 2.71557781749145545205368216765, 3.39896233277134585610990366575, 4.72916901985484185209248139884, 4.92025339438886395369489047888, 6.09270049536733414349274513765, 6.76360727272757381454020390912, 7.37497321130478871197915841208, 8.220445638160044929496837312007