L(s) = 1 | + (4.74 + 2.11i)3-s + (7.60 + 4.38i)5-s + (3.39 − 18.2i)7-s + (18.0 + 20.1i)9-s + (12.1 + 21.1i)11-s + 2.78·13-s + (26.7 + 36.9i)15-s + (23.4 − 13.5i)17-s + (57.2 + 33.0i)19-s + (54.6 − 79.1i)21-s + (44.5 − 77.1i)23-s + (−23.9 − 41.5i)25-s + (42.9 + 133. i)27-s + 77.3i·29-s + (76.0 − 43.9i)31-s + ⋯ |
L(s) = 1 | + (0.913 + 0.407i)3-s + (0.679 + 0.392i)5-s + (0.183 − 0.983i)7-s + (0.667 + 0.744i)9-s + (0.334 + 0.578i)11-s + 0.0594·13-s + (0.460 + 0.635i)15-s + (0.335 − 0.193i)17-s + (0.691 + 0.398i)19-s + (0.568 − 0.822i)21-s + (0.403 − 0.699i)23-s + (−0.191 − 0.332i)25-s + (0.306 + 0.951i)27-s + 0.495i·29-s + (0.440 − 0.254i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.142105384\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.142105384\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.74 - 2.11i)T \) |
| 7 | \( 1 + (-3.39 + 18.2i)T \) |
good | 5 | \( 1 + (-7.60 - 4.38i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-12.1 - 21.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 2.78T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-23.4 + 13.5i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-57.2 - 33.0i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-44.5 + 77.1i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 77.3iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-76.0 + 43.9i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (107. - 186. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 197. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 251. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-307. + 531. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (254. - 147. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-78.1 - 135. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (215. - 373. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-414. + 239. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 794.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (372. + 644. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-389. - 224. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.02e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-578. - 334. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.67e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87518190808114659580684029855, −10.08796693904909322947707136068, −9.582443097143248372215621473977, −8.381186066477136797664120798032, −7.44292131077706368480098547365, −6.55621011987047402459741030417, −5.01617209712693155231928673865, −3.97608596189537600291996355646, −2.80178022554049193102876765962, −1.43466812888832217723971568140,
1.24800918365231408702222648900, 2.41990745420374873837726379204, 3.60336728494963973234153831453, 5.23064193891920844019136641861, 6.11907995697268902166002298171, 7.35975896337516149404628670301, 8.401653349465898101400975254765, 9.151997095778523192433658392369, 9.706911243081972807080067940616, 11.15266484121105444313554486242