L(s) = 1 | + (−4.5 − 7.79i)3-s + (−11.2 + 19.4i)5-s + (96.4 − 86.5i)7-s + (−40.5 + 70.1i)9-s + (170. + 294. i)11-s − 728.·13-s + 202.·15-s + (−404. − 701. i)17-s + (513. − 888. i)19-s + (−1.10e3 − 362. i)21-s + (711. − 1.23e3i)23-s + (1.30e3 + 2.26e3i)25-s + 729·27-s + 5.21e3·29-s + (−3.51e3 − 6.09e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.201 + 0.348i)5-s + (0.744 − 0.667i)7-s + (−0.166 + 0.288i)9-s + (0.424 + 0.734i)11-s − 1.19·13-s + 0.232·15-s + (−0.339 − 0.588i)17-s + (0.326 − 0.564i)19-s + (−0.548 − 0.179i)21-s + (0.280 − 0.485i)23-s + (0.419 + 0.725i)25-s + 0.192·27-s + 1.15·29-s + (−0.657 − 1.13i)31-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(−0.963+0.267i)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)(−0.963+0.267i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
−0.963+0.267i
|
Analytic conductor: |
53.8889 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :5/2), −0.963+0.267i)
|
Particular Values
L(3) |
≈ |
0.6530976992 |
L(21) |
≈ |
0.6530976992 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1+(−96.4+86.5i)T |
good | 5 | 1+(11.2−19.4i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−170.−294.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+728.T+3.71e5T2 |
| 17 | 1+(404.+701.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−513.+888.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−711.+1.23e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−5.21e3T+2.05e7T2 |
| 31 | 1+(3.51e3+6.09e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(6.39e3−1.10e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.17e3T+1.15e8T2 |
| 43 | 1+3.66e3T+1.47e8T2 |
| 47 | 1+(−4.65e3+8.06e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(1.78e4+3.08e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.51e4+2.63e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(1.60e4−2.78e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−1.06e4−1.84e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+6.11e4T+1.80e9T2 |
| 73 | 1+(2.06e4+3.57e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(1.75e4−3.03e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+8.61e4T+3.93e9T2 |
| 89 | 1+(3.89e4−6.75e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.61e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39501857978055677288549894001, −9.465248455170271710804489528777, −8.204629951384130880292115367911, −7.17049658544612904984236278780, −6.84376097425132941238562797928, −5.16161245833028639427157226494, −4.42445899417816620148550033226, −2.80425232209686859272645099190, −1.53371413056489809555284023335, −0.17772440358612500032284825227,
1.39998275367882146143241893666, 2.91126666527624320595977150986, 4.30010729937356857222730498208, 5.16599322793603760425774586350, 6.08977406802697346458534352411, 7.43405440489018828499527026641, 8.542116378183797038172406321602, 9.140383908086825407899642182783, 10.33453607095052499775651833984, 11.12371789613013926100231121383