Properties

Label 2-336-21.5-c3-0-43
Degree $2$
Conductor $336$
Sign $-0.979 - 0.203i$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.35 − 5.01i)3-s + (2.40 − 4.16i)5-s + (3.40 + 18.2i)7-s + (−23.3 − 13.5i)9-s + (−29.6 + 17.1i)11-s − 17.1i·13-s + (−17.6 − 17.6i)15-s + (−50.4 − 87.4i)17-s + (−119. − 69.2i)19-s + (95.9 + 7.51i)21-s + (−0.541 − 0.312i)23-s + (50.9 + 88.2i)25-s + (−99.5 + 98.8i)27-s − 222. i·29-s + (−247. + 143. i)31-s + ⋯
L(s)  = 1  + (0.259 − 0.965i)3-s + (0.215 − 0.372i)5-s + (0.183 + 0.982i)7-s + (−0.864 − 0.501i)9-s + (−0.813 + 0.469i)11-s − 0.366i·13-s + (−0.303 − 0.304i)15-s + (−0.720 − 1.24i)17-s + (−1.44 − 0.835i)19-s + (0.996 + 0.0780i)21-s + (−0.00490 − 0.00283i)23-s + (0.407 + 0.705i)25-s + (−0.709 + 0.704i)27-s − 1.42i·29-s + (−1.43 + 0.829i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 - 0.203i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.979 - 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-0.979 - 0.203i$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (257, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ -0.979 - 0.203i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5907968572\)
\(L(\frac12)\) \(\approx\) \(0.5907968572\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.35 + 5.01i)T \)
7 \( 1 + (-3.40 - 18.2i)T \)
good5 \( 1 + (-2.40 + 4.16i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (29.6 - 17.1i)T + (665.5 - 1.15e3i)T^{2} \)
13 \( 1 + 17.1iT - 2.19e3T^{2} \)
17 \( 1 + (50.4 + 87.4i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (119. + 69.2i)T + (3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (0.541 + 0.312i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + 222. iT - 2.43e4T^{2} \)
31 \( 1 + (247. - 143. i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-9.19 + 15.9i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + 219.T + 6.89e4T^{2} \)
43 \( 1 - 370.T + 7.95e4T^{2} \)
47 \( 1 + (143. - 247. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-29.3 + 16.9i)T + (7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (-127. - 220. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (29.2 + 16.8i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (87.9 + 152. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 626. iT - 3.57e5T^{2} \)
73 \( 1 + (-189. + 109. i)T + (1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-263. + 456. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + 370.T + 5.71e5T^{2} \)
89 \( 1 + (412. - 714. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + 1.30e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83411456241040006253465954964, −9.338656862968032769023698021534, −8.781753074690969752053918923453, −7.78512238827853282355678160590, −6.83283191852449328507024134945, −5.72062725960724178011569257467, −4.77958956489563528839390017388, −2.80312817685566352143735370942, −1.98623941903398390348662875037, −0.18386036817522194869431753679, 2.10888159642603298704476291706, 3.59923256696362669411928066697, 4.38675207889924573488451183049, 5.66196852151355266398327363906, 6.77278760401778240873746479620, 8.085718645898707844681585716946, 8.756865620650571507555686689069, 10.03300898151456992577039330472, 10.73000263078801391221608786973, 11.02354850082561611038244686418

Graph of the $Z$-function along the critical line