L(s) = 1 | + (−0.668 − 1.24i)2-s + (0.258 − 0.965i)3-s + (−1.10 + 1.66i)4-s + (0.513 − 0.137i)5-s + (−1.37 + 0.323i)6-s + (1.08 + 2.41i)7-s + (2.81 + 0.262i)8-s + (−0.866 − 0.499i)9-s + (−0.515 − 0.548i)10-s + (1.67 − 6.25i)11-s + (1.32 + 1.49i)12-s + (3.08 − 3.08i)13-s + (2.28 − 2.96i)14-s − 0.532i·15-s + (−1.55 − 3.68i)16-s + (−1.95 + 1.12i)17-s + ⋯ |
L(s) = 1 | + (−0.472 − 0.881i)2-s + (0.149 − 0.557i)3-s + (−0.552 + 0.833i)4-s + (0.229 − 0.0615i)5-s + (−0.562 + 0.132i)6-s + (0.408 + 0.912i)7-s + (0.995 + 0.0928i)8-s + (−0.288 − 0.166i)9-s + (−0.162 − 0.173i)10-s + (0.505 − 1.88i)11-s + (0.382 + 0.432i)12-s + (0.856 − 0.856i)13-s + (0.611 − 0.791i)14-s − 0.137i·15-s + (−0.389 − 0.921i)16-s + (−0.474 + 0.274i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.714248 - 0.893920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.714248 - 0.893920i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.668 + 1.24i)T \) |
| 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 7 | \( 1 + (-1.08 - 2.41i)T \) |
good | 5 | \( 1 + (-0.513 + 0.137i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-1.67 + 6.25i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-3.08 + 3.08i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.95 - 1.12i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.117 + 0.0316i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.16 + 3.74i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.37 - 4.37i)T + 29iT^{2} \) |
| 31 | \( 1 + (1.25 + 2.17i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.554 - 2.07i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 8.63T + 41T^{2} \) |
| 43 | \( 1 + (2.21 + 2.21i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4.58 + 7.93i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (8.33 + 2.23i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (5.57 + 1.49i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.57 - 9.61i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-7.44 - 1.99i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 3.75T + 71T^{2} \) |
| 73 | \( 1 + (-0.753 - 1.30i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.23 + 2.44i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-10.6 - 10.6i)T + 83iT^{2} \) |
| 89 | \( 1 + (5.81 - 10.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 15.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23331673619879888926219838086, −10.66841010576075273548098773104, −9.178283984570928615816619562493, −8.592453477280786032844922139247, −7.999978840884719086843671449834, −6.38056872032684765412391161760, −5.40654968837449344076530077731, −3.65750718572303105256214515404, −2.59576287654804650322391531974, −1.08305427174569094004883287303,
1.69728468493281500679760318040, 4.17457324311869760746443160207, 4.67785890852066604499505743847, 6.20059400593866653500183494286, 7.11709481923910221648264838918, 7.928896270257604393880487374248, 9.219738069799160271561025329335, 9.679973241882918599951070524488, 10.62690350835940768353747898176, 11.51958377200594347713959470447