L(s) = 1 | + (−1.17 + 0.781i)2-s + (0.965 − 0.258i)3-s + (0.778 − 1.84i)4-s + (−1.63 − 0.436i)5-s + (−0.936 + 1.05i)6-s + (−2.22 − 1.43i)7-s + (0.522 + 2.77i)8-s + (0.866 − 0.499i)9-s + (2.26 − 0.759i)10-s + (−0.0320 − 0.119i)11-s + (0.275 − 1.98i)12-s + (−3.88 − 3.88i)13-s + (3.74 − 0.0522i)14-s − 1.68·15-s + (−2.78 − 2.86i)16-s + (0.0515 − 0.0893i)17-s + ⋯ |
L(s) = 1 | + (−0.833 + 0.552i)2-s + (0.557 − 0.149i)3-s + (0.389 − 0.921i)4-s + (−0.729 − 0.195i)5-s + (−0.382 + 0.432i)6-s + (−0.841 − 0.540i)7-s + (0.184 + 0.982i)8-s + (0.288 − 0.166i)9-s + (0.715 − 0.240i)10-s + (−0.00965 − 0.0360i)11-s + (0.0794 − 0.571i)12-s + (−1.07 − 1.07i)13-s + (0.999 − 0.0139i)14-s − 0.435·15-s + (−0.696 − 0.717i)16-s + (0.0125 − 0.0216i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.314541 - 0.407673i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.314541 - 0.407673i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.17 - 0.781i)T \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 7 | \( 1 + (2.22 + 1.43i)T \) |
good | 5 | \( 1 + (1.63 + 0.436i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.0320 + 0.119i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (3.88 + 3.88i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.0515 + 0.0893i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.855 + 3.19i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (5.38 - 3.10i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.66 + 2.66i)T + 29iT^{2} \) |
| 31 | \( 1 + (-2.17 + 3.76i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.88 - 2.38i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 7.82iT - 41T^{2} \) |
| 43 | \( 1 + (0.793 - 0.793i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.78 - 3.08i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.15 + 11.7i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.76 - 6.58i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.64 + 6.12i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (3.39 - 0.908i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 11.8iT - 71T^{2} \) |
| 73 | \( 1 + (-8.37 - 4.83i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.10 - 12.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.85 - 3.85i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.98 + 1.72i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 16.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11654833232754711033864159268, −9.879011300754581249056586883158, −9.598151348086127123004804284449, −8.169709532829638269128089980823, −7.70081867754330292000691087156, −6.81380735157246501929045735119, −5.57393305577031979228666195993, −4.08778569491083117970398507061, −2.59637824885014918848417401776, −0.41915765917494837965737860325,
2.16976067262633560955973226963, 3.31267824392349835159288587721, 4.35311925273902659189373226748, 6.33634470312069191140329519178, 7.39816295406353622521248757066, 8.150573639193987424345279807771, 9.269077441224664193274846503615, 9.735395940402097994005745804095, 10.76480014638115038466853392142, 11.99545844304724053144451053731