L(s) = 1 | + (1.37 − 0.322i)2-s + (−0.965 + 0.258i)3-s + (1.79 − 0.887i)4-s + (2.43 + 0.653i)5-s + (−1.24 + 0.667i)6-s + (−1.71 − 2.01i)7-s + (2.18 − 1.79i)8-s + (0.866 − 0.499i)9-s + (3.56 + 0.114i)10-s + (−0.0306 − 0.114i)11-s + (−1.50 + 1.32i)12-s + (2.21 + 2.21i)13-s + (−3.00 − 2.22i)14-s − 2.52·15-s + (2.42 − 3.18i)16-s + (−2.45 + 4.26i)17-s + ⋯ |
L(s) = 1 | + (0.973 − 0.227i)2-s + (−0.557 + 0.149i)3-s + (0.896 − 0.443i)4-s + (1.09 + 0.292i)5-s + (−0.508 + 0.272i)6-s + (−0.647 − 0.762i)7-s + (0.771 − 0.635i)8-s + (0.288 − 0.166i)9-s + (1.12 + 0.0361i)10-s + (−0.00925 − 0.0345i)11-s + (−0.433 + 0.381i)12-s + (0.613 + 0.613i)13-s + (−0.803 − 0.594i)14-s − 0.651·15-s + (0.606 − 0.795i)16-s + (−0.596 + 1.03i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.392i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.919 + 0.392i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.20419 - 0.451211i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.20419 - 0.451211i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.322i)T \) |
| 3 | \( 1 + (0.965 - 0.258i)T \) |
| 7 | \( 1 + (1.71 + 2.01i)T \) |
good | 5 | \( 1 + (-2.43 - 0.653i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.0306 + 0.114i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-2.21 - 2.21i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.45 - 4.26i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.896 + 3.34i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.22 + 1.28i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.376 - 0.376i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.09 - 7.08i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (8.27 + 2.21i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 0.368iT - 41T^{2} \) |
| 43 | \( 1 + (3.90 - 3.90i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.566 - 0.981i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.15 + 11.7i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (0.157 + 0.586i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.57 - 13.3i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (6.83 - 1.83i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 7.37iT - 71T^{2} \) |
| 73 | \( 1 + (4.59 + 2.65i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.74 - 4.75i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.86 + 2.86i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.57 + 2.06i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 14.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41168534076266388291047832983, −10.62546168755956748357048281562, −10.10753167160410032063761218339, −8.949222768802528490782499393021, −7.01119603751821630609678892459, −6.51641101245857909173653485119, −5.61347261612643515540706739423, −4.44039485346197966567133446764, −3.28525210054335121589270393948, −1.68322485599635058582313451672,
1.96843059884239340447036656601, 3.32376290705505447717165828917, 4.96602689331051829335731963968, 5.75023330809684720958492416441, 6.32591069040401622609047096227, 7.48227960104889701351198198318, 8.868101375535750941459224356907, 9.859514220658598707032204830557, 10.89728742730232553687963240020, 11.87230516294980549861476225263