L(s) = 1 | + (−1.94 + 0.455i)2-s + (1.67 − 0.448i)3-s + (3.58 − 1.77i)4-s + (−6.86 − 1.83i)5-s + (−3.05 + 1.63i)6-s + (6.65 + 2.17i)7-s + (−6.17 + 5.08i)8-s + (2.59 − 1.50i)9-s + (14.2 + 0.457i)10-s + (−9.67 + 2.59i)11-s + (5.20 − 4.57i)12-s + (8.11 + 8.11i)13-s + (−13.9 − 1.21i)14-s − 12.3·15-s + (9.71 − 12.7i)16-s + (17.0 + 9.86i)17-s + ⋯ |
L(s) = 1 | + (−0.973 + 0.227i)2-s + (0.557 − 0.149i)3-s + (0.896 − 0.443i)4-s + (−1.37 − 0.367i)5-s + (−0.509 + 0.272i)6-s + (0.950 + 0.311i)7-s + (−0.771 + 0.635i)8-s + (0.288 − 0.166i)9-s + (1.42 + 0.0457i)10-s + (−0.879 + 0.235i)11-s + (0.433 − 0.381i)12-s + (0.624 + 0.624i)13-s + (−0.996 − 0.0866i)14-s − 0.820·15-s + (0.607 − 0.794i)16-s + (1.00 + 0.580i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0742i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 - 0.0742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.13714 + 0.0422679i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13714 + 0.0422679i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.94 - 0.455i)T \) |
| 3 | \( 1 + (-1.67 + 0.448i)T \) |
| 7 | \( 1 + (-6.65 - 2.17i)T \) |
good | 5 | \( 1 + (6.86 + 1.83i)T + (21.6 + 12.5i)T^{2} \) |
| 11 | \( 1 + (9.67 - 2.59i)T + (104. - 60.5i)T^{2} \) |
| 13 | \( 1 + (-8.11 - 8.11i)T + 169iT^{2} \) |
| 17 | \( 1 + (-17.0 - 9.86i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-1.49 + 5.58i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-38.8 + 22.4i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-10.8 + 10.8i)T - 841iT^{2} \) |
| 31 | \( 1 + (20.6 + 11.9i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (0.325 - 1.21i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 - 41.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-15.3 - 15.3i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-73.8 + 42.6i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (2.36 - 0.634i)T + (2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (-26.1 - 97.6i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-17.1 + 64.1i)T + (-3.22e3 - 1.86e3i)T^{2} \) |
| 67 | \( 1 + (-22.5 - 84.1i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 - 100. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-19.3 + 33.5i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (16.0 + 27.7i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (28.6 + 28.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (11.3 + 19.6i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 134. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22971249079634858394127300414, −10.48638272279259605791415177847, −9.076090816241115068892381600992, −8.442912808088933127862530438103, −7.79608418981554320617845763695, −7.06980612899639443030366364892, −5.47564460675221999069412421137, −4.18180970593714273957906791771, −2.61607071476220261794648542693, −1.00952064294580154701875563259,
0.983213013032779852675886934756, 2.90462065072275621897362201595, 3.73764707590985998533726591038, 5.32486792736788164068716825260, 7.22926616188474342463285347040, 7.70962858585662520352996609085, 8.317858443427552075235923510984, 9.342211881333486966176959048982, 10.76591796963504164873066533548, 10.89234062738061589513336160209