Properties

Label 2-336-112.101-c2-0-17
Degree $2$
Conductor $336$
Sign $0.946 + 0.321i$
Analytic cond. $9.15533$
Root an. cond. $3.02577$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 − 0.00346i)2-s + (−1.67 + 0.448i)3-s + (3.99 + 0.0138i)4-s + (0.893 + 0.239i)5-s + (3.34 − 0.890i)6-s + (−6.85 + 1.43i)7-s + (−7.99 − 0.0415i)8-s + (2.59 − 1.50i)9-s + (−1.78 − 0.481i)10-s + (13.1 − 3.52i)11-s + (−6.69 + 1.76i)12-s + (−5.95 − 5.95i)13-s + (13.7 − 2.85i)14-s − 1.60·15-s + (15.9 + 0.110i)16-s + (−7.06 − 4.08i)17-s + ⋯
L(s)  = 1  + (−0.999 − 0.00173i)2-s + (−0.557 + 0.149i)3-s + (0.999 + 0.00346i)4-s + (0.178 + 0.0478i)5-s + (0.557 − 0.148i)6-s + (−0.978 + 0.205i)7-s + (−0.999 − 0.00519i)8-s + (0.288 − 0.166i)9-s + (−0.178 − 0.0481i)10-s + (1.19 − 0.320i)11-s + (−0.558 + 0.147i)12-s + (−0.457 − 0.457i)13-s + (0.978 − 0.203i)14-s − 0.106·15-s + (0.999 + 0.00692i)16-s + (−0.415 − 0.240i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 + 0.321i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.946 + 0.321i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $0.946 + 0.321i$
Analytic conductor: \(9.15533\)
Root analytic conductor: \(3.02577\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (325, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :1),\ 0.946 + 0.321i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.757814 - 0.125238i\)
\(L(\frac12)\) \(\approx\) \(0.757814 - 0.125238i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.99 + 0.00346i)T \)
3 \( 1 + (1.67 - 0.448i)T \)
7 \( 1 + (6.85 - 1.43i)T \)
good5 \( 1 + (-0.893 - 0.239i)T + (21.6 + 12.5i)T^{2} \)
11 \( 1 + (-13.1 + 3.52i)T + (104. - 60.5i)T^{2} \)
13 \( 1 + (5.95 + 5.95i)T + 169iT^{2} \)
17 \( 1 + (7.06 + 4.08i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (6.93 - 25.8i)T + (-312. - 180.5i)T^{2} \)
23 \( 1 + (-17.5 + 10.1i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (-23.5 + 23.5i)T - 841iT^{2} \)
31 \( 1 + (-22.8 - 13.1i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (-10.0 + 37.6i)T + (-1.18e3 - 684.5i)T^{2} \)
41 \( 1 - 69.5T + 1.68e3T^{2} \)
43 \( 1 + (-49.4 - 49.4i)T + 1.84e3iT^{2} \)
47 \( 1 + (-64.1 + 37.0i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (-36.8 + 9.88i)T + (2.43e3 - 1.40e3i)T^{2} \)
59 \( 1 + (5.08 + 18.9i)T + (-3.01e3 + 1.74e3i)T^{2} \)
61 \( 1 + (-1.81 + 6.76i)T + (-3.22e3 - 1.86e3i)T^{2} \)
67 \( 1 + (24.2 + 90.3i)T + (-3.88e3 + 2.24e3i)T^{2} \)
71 \( 1 - 96.2iT - 5.04e3T^{2} \)
73 \( 1 + (-13.4 + 23.3i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (5.05 + 8.75i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (64.5 + 64.5i)T + 6.88e3iT^{2} \)
89 \( 1 + (-8.78 - 15.2i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 - 161. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10904748404097837255791120137, −10.19580533936826579258477793330, −9.546202573329781167430543447629, −8.691675478429371818131057467117, −7.46787052166569152202395720339, −6.35890398198608195289435724293, −5.91029772345638037229182665944, −4.00815111078498674741509326986, −2.54378187648615403820451218420, −0.71777491095611300722475291005, 0.961132561965930869426456121806, 2.59029547046696108644693165879, 4.24517839746289872355737136927, 5.91357318899566484625062828849, 6.77176279023228478734953381483, 7.31936818559109871677887070449, 8.971104876138149861062373849641, 9.380996913670258646726051792577, 10.38245544216932257520850560064, 11.28125052596993158014795306040

Graph of the $Z$-function along the critical line