L(s) = 1 | − 9·3-s + 24·5-s − 49·7-s + 81·9-s − 66·11-s + 98·13-s − 216·15-s − 216·17-s + 340·19-s + 441·21-s + 1.03e3·23-s − 2.54e3·25-s − 729·27-s − 2.49e3·29-s + 7.04e3·31-s + 594·33-s − 1.17e3·35-s − 1.22e4·37-s − 882·39-s + 6.46e3·41-s + 1.54e4·43-s + 1.94e3·45-s − 2.06e4·47-s + 2.40e3·49-s + 1.94e3·51-s + 3.24e4·53-s − 1.58e3·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.429·5-s − 0.377·7-s + 1/3·9-s − 0.164·11-s + 0.160·13-s − 0.247·15-s − 0.181·17-s + 0.216·19-s + 0.218·21-s + 0.409·23-s − 0.815·25-s − 0.192·27-s − 0.549·29-s + 1.31·31-s + 0.0949·33-s − 0.162·35-s − 1.46·37-s − 0.0928·39-s + 0.600·41-s + 1.27·43-s + 0.143·45-s − 1.36·47-s + 1/7·49-s + 0.104·51-s + 1.58·53-s − 0.0706·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.570594118 |
L(21) |
≈ |
1.570594118 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 7 | 1+p2T |
good | 5 | 1−24T+p5T2 |
| 11 | 1+6pT+p5T2 |
| 13 | 1−98T+p5T2 |
| 17 | 1+216T+p5T2 |
| 19 | 1−340T+p5T2 |
| 23 | 1−1038T+p5T2 |
| 29 | 1+2490T+p5T2 |
| 31 | 1−7048T+p5T2 |
| 37 | 1+12238T+p5T2 |
| 41 | 1−6468T+p5T2 |
| 43 | 1−15412T+p5T2 |
| 47 | 1+20604T+p5T2 |
| 53 | 1−32490T+p5T2 |
| 59 | 1+34224T+p5T2 |
| 61 | 1−35654T+p5T2 |
| 67 | 1+12680T+p5T2 |
| 71 | 1−42642T+p5T2 |
| 73 | 1−33734T+p5T2 |
| 79 | 1−85108T+p5T2 |
| 83 | 1−106764T+p5T2 |
| 89 | 1−34884T+p5T2 |
| 97 | 1−18662T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68713333288016604261300323906, −9.888918160455992619229168651973, −9.012313614712693100519160442273, −7.79356508267304610060163563719, −6.71098295210445021640023294193, −5.87127380338154036328048077131, −4.88927677860030034183450172715, −3.58411228101088867263840724030, −2.14830011079263387571484286844, −0.70505553769812684164230064736,
0.70505553769812684164230064736, 2.14830011079263387571484286844, 3.58411228101088867263840724030, 4.88927677860030034183450172715, 5.87127380338154036328048077131, 6.71098295210445021640023294193, 7.79356508267304610060163563719, 9.012313614712693100519160442273, 9.888918160455992619229168651973, 10.68713333288016604261300323906