Properties

Label 2-336-1.1-c5-0-6
Degree $2$
Conductor $336$
Sign $1$
Analytic cond. $53.8889$
Root an. cond. $7.34091$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 24·5-s − 49·7-s + 81·9-s − 66·11-s + 98·13-s − 216·15-s − 216·17-s + 340·19-s + 441·21-s + 1.03e3·23-s − 2.54e3·25-s − 729·27-s − 2.49e3·29-s + 7.04e3·31-s + 594·33-s − 1.17e3·35-s − 1.22e4·37-s − 882·39-s + 6.46e3·41-s + 1.54e4·43-s + 1.94e3·45-s − 2.06e4·47-s + 2.40e3·49-s + 1.94e3·51-s + 3.24e4·53-s − 1.58e3·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.429·5-s − 0.377·7-s + 1/3·9-s − 0.164·11-s + 0.160·13-s − 0.247·15-s − 0.181·17-s + 0.216·19-s + 0.218·21-s + 0.409·23-s − 0.815·25-s − 0.192·27-s − 0.549·29-s + 1.31·31-s + 0.0949·33-s − 0.162·35-s − 1.46·37-s − 0.0928·39-s + 0.600·41-s + 1.27·43-s + 0.143·45-s − 1.36·47-s + 1/7·49-s + 0.104·51-s + 1.58·53-s − 0.0706·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(53.8889\)
Root analytic conductor: \(7.34091\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.570594118\)
\(L(\frac12)\) \(\approx\) \(1.570594118\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
7 \( 1 + p^{2} T \)
good5 \( 1 - 24 T + p^{5} T^{2} \)
11 \( 1 + 6 p T + p^{5} T^{2} \)
13 \( 1 - 98 T + p^{5} T^{2} \)
17 \( 1 + 216 T + p^{5} T^{2} \)
19 \( 1 - 340 T + p^{5} T^{2} \)
23 \( 1 - 1038 T + p^{5} T^{2} \)
29 \( 1 + 2490 T + p^{5} T^{2} \)
31 \( 1 - 7048 T + p^{5} T^{2} \)
37 \( 1 + 12238 T + p^{5} T^{2} \)
41 \( 1 - 6468 T + p^{5} T^{2} \)
43 \( 1 - 15412 T + p^{5} T^{2} \)
47 \( 1 + 20604 T + p^{5} T^{2} \)
53 \( 1 - 32490 T + p^{5} T^{2} \)
59 \( 1 + 34224 T + p^{5} T^{2} \)
61 \( 1 - 35654 T + p^{5} T^{2} \)
67 \( 1 + 12680 T + p^{5} T^{2} \)
71 \( 1 - 42642 T + p^{5} T^{2} \)
73 \( 1 - 33734 T + p^{5} T^{2} \)
79 \( 1 - 85108 T + p^{5} T^{2} \)
83 \( 1 - 106764 T + p^{5} T^{2} \)
89 \( 1 - 34884 T + p^{5} T^{2} \)
97 \( 1 - 18662 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68713333288016604261300323906, −9.888918160455992619229168651973, −9.012313614712693100519160442273, −7.79356508267304610060163563719, −6.71098295210445021640023294193, −5.87127380338154036328048077131, −4.88927677860030034183450172715, −3.58411228101088867263840724030, −2.14830011079263387571484286844, −0.70505553769812684164230064736, 0.70505553769812684164230064736, 2.14830011079263387571484286844, 3.58411228101088867263840724030, 4.88927677860030034183450172715, 5.87127380338154036328048077131, 6.71098295210445021640023294193, 7.79356508267304610060163563719, 9.012313614712693100519160442273, 9.888918160455992619229168651973, 10.68713333288016604261300323906

Graph of the $Z$-function along the critical line