L(s) = 1 | − 9·3-s − 34·5-s + 49·7-s + 81·9-s + 332·11-s − 1.02e3·13-s + 306·15-s + 922·17-s − 452·19-s − 441·21-s + 3.77e3·23-s − 1.96e3·25-s − 729·27-s + 1.16e3·29-s + 9.79e3·31-s − 2.98e3·33-s − 1.66e3·35-s + 2.39e3·37-s + 9.23e3·39-s − 7.23e3·41-s − 4.65e3·43-s − 2.75e3·45-s − 2.46e4·47-s + 2.40e3·49-s − 8.29e3·51-s + 1.11e3·53-s − 1.12e4·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.608·5-s + 0.377·7-s + 1/3·9-s + 0.827·11-s − 1.68·13-s + 0.351·15-s + 0.773·17-s − 0.287·19-s − 0.218·21-s + 1.48·23-s − 0.630·25-s − 0.192·27-s + 0.257·29-s + 1.83·31-s − 0.477·33-s − 0.229·35-s + 0.287·37-s + 0.972·39-s − 0.671·41-s − 0.383·43-s − 0.202·45-s − 1.62·47-s + 1/7·49-s − 0.446·51-s + 0.0542·53-s − 0.503·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 7 | 1−p2T |
good | 5 | 1+34T+p5T2 |
| 11 | 1−332T+p5T2 |
| 13 | 1+1026T+p5T2 |
| 17 | 1−922T+p5T2 |
| 19 | 1+452T+p5T2 |
| 23 | 1−3776T+p5T2 |
| 29 | 1−1166T+p5T2 |
| 31 | 1−9792T+p5T2 |
| 37 | 1−2390T+p5T2 |
| 41 | 1+7230T+p5T2 |
| 43 | 1+4652T+p5T2 |
| 47 | 1+24672T+p5T2 |
| 53 | 1−1110T+p5T2 |
| 59 | 1+46892T+p5T2 |
| 61 | 1+9762T+p5T2 |
| 67 | 1−26252T+p5T2 |
| 71 | 1+65440T+p5T2 |
| 73 | 1+5606T+p5T2 |
| 79 | 1−9840T+p5T2 |
| 83 | 1+61108T+p5T2 |
| 89 | 1+62958T+p5T2 |
| 97 | 1+37838T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25856883851818674074313788294, −9.487309125731153278184453242928, −8.231654937444945741664297685900, −7.34548424296612183582124217320, −6.45795571312658408086281263883, −5.11008873504651754148495748494, −4.38399259143924650933903289331, −2.95600532809480101128262969901, −1.32791277727057133022615217788, 0,
1.32791277727057133022615217788, 2.95600532809480101128262969901, 4.38399259143924650933903289331, 5.11008873504651754148495748494, 6.45795571312658408086281263883, 7.34548424296612183582124217320, 8.231654937444945741664297685900, 9.487309125731153278184453242928, 10.25856883851818674074313788294