L(s) = 1 | − 9·3-s − 64·5-s − 49·7-s + 81·9-s + 54·11-s + 738·13-s + 576·15-s − 848·17-s + 1.60e3·19-s + 441·21-s + 3.67e3·23-s + 971·25-s − 729·27-s − 4.33e3·29-s + 4.76e3·31-s − 486·33-s + 3.13e3·35-s − 2.09e3·37-s − 6.64e3·39-s − 6.11e3·41-s − 7.91e3·43-s − 5.18e3·45-s − 6.57e3·47-s + 2.40e3·49-s + 7.63e3·51-s − 7.89e3·53-s − 3.45e3·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.14·5-s − 0.377·7-s + 1/3·9-s + 0.134·11-s + 1.21·13-s + 0.660·15-s − 0.711·17-s + 1.01·19-s + 0.218·21-s + 1.44·23-s + 0.310·25-s − 0.192·27-s − 0.956·29-s + 0.889·31-s − 0.0776·33-s + 0.432·35-s − 0.251·37-s − 0.699·39-s − 0.568·41-s − 0.652·43-s − 0.381·45-s − 0.433·47-s + 1/7·49-s + 0.410·51-s − 0.386·53-s − 0.154·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 7 | 1+p2T |
good | 5 | 1+64T+p5T2 |
| 11 | 1−54T+p5T2 |
| 13 | 1−738T+p5T2 |
| 17 | 1+848T+p5T2 |
| 19 | 1−1604T+p5T2 |
| 23 | 1−3670T+p5T2 |
| 29 | 1+4330T+p5T2 |
| 31 | 1−4760T+p5T2 |
| 37 | 1+2094T+p5T2 |
| 41 | 1+6116T+p5T2 |
| 43 | 1+7916T+p5T2 |
| 47 | 1+6572T+p5T2 |
| 53 | 1+7894T+p5T2 |
| 59 | 1−41664T+p5T2 |
| 61 | 1+26570T+p5T2 |
| 67 | 1−41736T+p5T2 |
| 71 | 1+83574T+p5T2 |
| 73 | 1+42314T+p5T2 |
| 79 | 1+508T+p5T2 |
| 83 | 1−8364T+p5T2 |
| 89 | 1+49220T+p5T2 |
| 97 | 1−159670T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48159752562243141894724077633, −9.273550319399243687640192999938, −8.348757882836075576563077428416, −7.28417974855921185099907192910, −6.46563615155517240501636871886, −5.25954415483637372716836842909, −4.10053774400442202940911963221, −3.18187401842698923519102056507, −1.21109946677285471860517835713, 0,
1.21109946677285471860517835713, 3.18187401842698923519102056507, 4.10053774400442202940911963221, 5.25954415483637372716836842909, 6.46563615155517240501636871886, 7.28417974855921185099907192910, 8.348757882836075576563077428416, 9.273550319399243687640192999938, 10.48159752562243141894724077633