L(s) = 1 | − 9·3-s − 64·5-s − 49·7-s + 81·9-s + 54·11-s + 738·13-s + 576·15-s − 848·17-s + 1.60e3·19-s + 441·21-s + 3.67e3·23-s + 971·25-s − 729·27-s − 4.33e3·29-s + 4.76e3·31-s − 486·33-s + 3.13e3·35-s − 2.09e3·37-s − 6.64e3·39-s − 6.11e3·41-s − 7.91e3·43-s − 5.18e3·45-s − 6.57e3·47-s + 2.40e3·49-s + 7.63e3·51-s − 7.89e3·53-s − 3.45e3·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.14·5-s − 0.377·7-s + 1/3·9-s + 0.134·11-s + 1.21·13-s + 0.660·15-s − 0.711·17-s + 1.01·19-s + 0.218·21-s + 1.44·23-s + 0.310·25-s − 0.192·27-s − 0.956·29-s + 0.889·31-s − 0.0776·33-s + 0.432·35-s − 0.251·37-s − 0.699·39-s − 0.568·41-s − 0.652·43-s − 0.381·45-s − 0.433·47-s + 1/7·49-s + 0.410·51-s − 0.386·53-s − 0.154·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + p^{2} T \) |
| 7 | \( 1 + p^{2} T \) |
good | 5 | \( 1 + 64 T + p^{5} T^{2} \) |
| 11 | \( 1 - 54 T + p^{5} T^{2} \) |
| 13 | \( 1 - 738 T + p^{5} T^{2} \) |
| 17 | \( 1 + 848 T + p^{5} T^{2} \) |
| 19 | \( 1 - 1604 T + p^{5} T^{2} \) |
| 23 | \( 1 - 3670 T + p^{5} T^{2} \) |
| 29 | \( 1 + 4330 T + p^{5} T^{2} \) |
| 31 | \( 1 - 4760 T + p^{5} T^{2} \) |
| 37 | \( 1 + 2094 T + p^{5} T^{2} \) |
| 41 | \( 1 + 6116 T + p^{5} T^{2} \) |
| 43 | \( 1 + 7916 T + p^{5} T^{2} \) |
| 47 | \( 1 + 6572 T + p^{5} T^{2} \) |
| 53 | \( 1 + 7894 T + p^{5} T^{2} \) |
| 59 | \( 1 - 41664 T + p^{5} T^{2} \) |
| 61 | \( 1 + 26570 T + p^{5} T^{2} \) |
| 67 | \( 1 - 41736 T + p^{5} T^{2} \) |
| 71 | \( 1 + 83574 T + p^{5} T^{2} \) |
| 73 | \( 1 + 42314 T + p^{5} T^{2} \) |
| 79 | \( 1 + 508 T + p^{5} T^{2} \) |
| 83 | \( 1 - 8364 T + p^{5} T^{2} \) |
| 89 | \( 1 + 49220 T + p^{5} T^{2} \) |
| 97 | \( 1 - 159670 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48159752562243141894724077633, −9.273550319399243687640192999938, −8.348757882836075576563077428416, −7.28417974855921185099907192910, −6.46563615155517240501636871886, −5.25954415483637372716836842909, −4.10053774400442202940911963221, −3.18187401842698923519102056507, −1.21109946677285471860517835713, 0,
1.21109946677285471860517835713, 3.18187401842698923519102056507, 4.10053774400442202940911963221, 5.25954415483637372716836842909, 6.46563615155517240501636871886, 7.28417974855921185099907192910, 8.348757882836075576563077428416, 9.273550319399243687640192999938, 10.48159752562243141894724077633