L(s) = 1 | + 9·3-s − 34·5-s + 49·7-s + 81·9-s + 340·11-s + 454·13-s − 306·15-s − 798·17-s − 892·19-s + 441·21-s + 3.19e3·23-s − 1.96e3·25-s + 729·27-s − 8.24e3·29-s + 2.49e3·31-s + 3.06e3·33-s − 1.66e3·35-s + 9.79e3·37-s + 4.08e3·39-s + 1.98e4·41-s + 1.72e4·43-s − 2.75e3·45-s − 8.92e3·47-s + 2.40e3·49-s − 7.18e3·51-s + 150·53-s − 1.15e4·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.608·5-s + 0.377·7-s + 1/3·9-s + 0.847·11-s + 0.745·13-s − 0.351·15-s − 0.669·17-s − 0.566·19-s + 0.218·21-s + 1.25·23-s − 0.630·25-s + 0.192·27-s − 1.81·29-s + 0.466·31-s + 0.489·33-s − 0.229·35-s + 1.17·37-s + 0.430·39-s + 1.84·41-s + 1.42·43-s − 0.202·45-s − 0.589·47-s + 1/7·49-s − 0.386·51-s + 0.00733·53-s − 0.515·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.608311326 |
L(21) |
≈ |
2.608311326 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p2T |
| 7 | 1−p2T |
good | 5 | 1+34T+p5T2 |
| 11 | 1−340T+p5T2 |
| 13 | 1−454T+p5T2 |
| 17 | 1+798T+p5T2 |
| 19 | 1+892T+p5T2 |
| 23 | 1−3192T+p5T2 |
| 29 | 1+8242T+p5T2 |
| 31 | 1−2496T+p5T2 |
| 37 | 1−9798T+p5T2 |
| 41 | 1−19834T+p5T2 |
| 43 | 1−17236T+p5T2 |
| 47 | 1+8928T+p5T2 |
| 53 | 1−150T+p5T2 |
| 59 | 1−42396T+p5T2 |
| 61 | 1−14758T+p5T2 |
| 67 | 1−1676T+p5T2 |
| 71 | 1+14568T+p5T2 |
| 73 | 1−78378T+p5T2 |
| 79 | 1−2272T+p5T2 |
| 83 | 1−37764T+p5T2 |
| 89 | 1+117286T+p5T2 |
| 97 | 1−10002T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05703355156774468292632628458, −9.539647215135225232145350182252, −8.852902043513638274273940261398, −7.948196697666891224299296664988, −7.04924647583409911325506229709, −5.91154036232606829397198566739, −4.39375374417510443571817010023, −3.69732301842623012294772726858, −2.25233064069868240762843230113, −0.894635478060079159301213642759,
0.894635478060079159301213642759, 2.25233064069868240762843230113, 3.69732301842623012294772726858, 4.39375374417510443571817010023, 5.91154036232606829397198566739, 7.04924647583409911325506229709, 7.948196697666891224299296664988, 8.852902043513638274273940261398, 9.539647215135225232145350182252, 11.05703355156774468292632628458