Properties

Label 2-336-1.1-c5-0-10
Degree $2$
Conductor $336$
Sign $1$
Analytic cond. $53.8889$
Root an. cond. $7.34091$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 34·5-s + 49·7-s + 81·9-s + 340·11-s + 454·13-s − 306·15-s − 798·17-s − 892·19-s + 441·21-s + 3.19e3·23-s − 1.96e3·25-s + 729·27-s − 8.24e3·29-s + 2.49e3·31-s + 3.06e3·33-s − 1.66e3·35-s + 9.79e3·37-s + 4.08e3·39-s + 1.98e4·41-s + 1.72e4·43-s − 2.75e3·45-s − 8.92e3·47-s + 2.40e3·49-s − 7.18e3·51-s + 150·53-s − 1.15e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.608·5-s + 0.377·7-s + 1/3·9-s + 0.847·11-s + 0.745·13-s − 0.351·15-s − 0.669·17-s − 0.566·19-s + 0.218·21-s + 1.25·23-s − 0.630·25-s + 0.192·27-s − 1.81·29-s + 0.466·31-s + 0.489·33-s − 0.229·35-s + 1.17·37-s + 0.430·39-s + 1.84·41-s + 1.42·43-s − 0.202·45-s − 0.589·47-s + 1/7·49-s − 0.386·51-s + 0.00733·53-s − 0.515·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(53.8889\)
Root analytic conductor: \(7.34091\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.608311326\)
\(L(\frac12)\) \(\approx\) \(2.608311326\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good5 \( 1 + 34 T + p^{5} T^{2} \)
11 \( 1 - 340 T + p^{5} T^{2} \)
13 \( 1 - 454 T + p^{5} T^{2} \)
17 \( 1 + 798 T + p^{5} T^{2} \)
19 \( 1 + 892 T + p^{5} T^{2} \)
23 \( 1 - 3192 T + p^{5} T^{2} \)
29 \( 1 + 8242 T + p^{5} T^{2} \)
31 \( 1 - 2496 T + p^{5} T^{2} \)
37 \( 1 - 9798 T + p^{5} T^{2} \)
41 \( 1 - 19834 T + p^{5} T^{2} \)
43 \( 1 - 17236 T + p^{5} T^{2} \)
47 \( 1 + 8928 T + p^{5} T^{2} \)
53 \( 1 - 150 T + p^{5} T^{2} \)
59 \( 1 - 42396 T + p^{5} T^{2} \)
61 \( 1 - 14758 T + p^{5} T^{2} \)
67 \( 1 - 1676 T + p^{5} T^{2} \)
71 \( 1 + 14568 T + p^{5} T^{2} \)
73 \( 1 - 78378 T + p^{5} T^{2} \)
79 \( 1 - 2272 T + p^{5} T^{2} \)
83 \( 1 - 37764 T + p^{5} T^{2} \)
89 \( 1 + 117286 T + p^{5} T^{2} \)
97 \( 1 - 10002 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05703355156774468292632628458, −9.539647215135225232145350182252, −8.852902043513638274273940261398, −7.948196697666891224299296664988, −7.04924647583409911325506229709, −5.91154036232606829397198566739, −4.39375374417510443571817010023, −3.69732301842623012294772726858, −2.25233064069868240762843230113, −0.894635478060079159301213642759, 0.894635478060079159301213642759, 2.25233064069868240762843230113, 3.69732301842623012294772726858, 4.39375374417510443571817010023, 5.91154036232606829397198566739, 7.04924647583409911325506229709, 7.948196697666891224299296664988, 8.852902043513638274273940261398, 9.539647215135225232145350182252, 11.05703355156774468292632628458

Graph of the $Z$-function along the critical line