Properties

Label 2-336-1.1-c3-0-15
Degree $2$
Conductor $336$
Sign $-1$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 10·5-s − 7·7-s + 9·9-s + 12·11-s + 30·13-s − 30·15-s + 34·17-s − 148·19-s − 21·21-s − 152·23-s − 25·25-s + 27·27-s − 106·29-s − 304·31-s + 36·33-s + 70·35-s − 114·37-s + 90·39-s + 202·41-s − 116·43-s − 90·45-s − 224·47-s + 49·49-s + 102·51-s − 274·53-s − 120·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s + 0.328·11-s + 0.640·13-s − 0.516·15-s + 0.485·17-s − 1.78·19-s − 0.218·21-s − 1.37·23-s − 1/5·25-s + 0.192·27-s − 0.678·29-s − 1.76·31-s + 0.189·33-s + 0.338·35-s − 0.506·37-s + 0.369·39-s + 0.769·41-s − 0.411·43-s − 0.298·45-s − 0.695·47-s + 1/7·49-s + 0.280·51-s − 0.710·53-s − 0.294·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
7 \( 1 + p T \)
good5 \( 1 + 2 p T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 - 30 T + p^{3} T^{2} \)
17 \( 1 - 2 p T + p^{3} T^{2} \)
19 \( 1 + 148 T + p^{3} T^{2} \)
23 \( 1 + 152 T + p^{3} T^{2} \)
29 \( 1 + 106 T + p^{3} T^{2} \)
31 \( 1 + 304 T + p^{3} T^{2} \)
37 \( 1 + 114 T + p^{3} T^{2} \)
41 \( 1 - 202 T + p^{3} T^{2} \)
43 \( 1 + 116 T + p^{3} T^{2} \)
47 \( 1 + 224 T + p^{3} T^{2} \)
53 \( 1 + 274 T + p^{3} T^{2} \)
59 \( 1 - 660 T + p^{3} T^{2} \)
61 \( 1 - 382 T + p^{3} T^{2} \)
67 \( 1 + 12 T + p^{3} T^{2} \)
71 \( 1 - 552 T + p^{3} T^{2} \)
73 \( 1 + 614 T + p^{3} T^{2} \)
79 \( 1 + 880 T + p^{3} T^{2} \)
83 \( 1 - 108 T + p^{3} T^{2} \)
89 \( 1 + 86 T + p^{3} T^{2} \)
97 \( 1 - 1426 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69016277315891233656152665294, −9.657937804193542364900762643509, −8.638885954802964202956600690123, −7.955765069573701785111334525963, −6.92015590059259223638448872427, −5.81917927383298404226699125277, −4.14588315318691583224823160744, −3.57215610325400514085082382261, −1.94413213541946236781267209249, 0, 1.94413213541946236781267209249, 3.57215610325400514085082382261, 4.14588315318691583224823160744, 5.81917927383298404226699125277, 6.92015590059259223638448872427, 7.955765069573701785111334525963, 8.638885954802964202956600690123, 9.657937804193542364900762643509, 10.69016277315891233656152665294

Graph of the $Z$-function along the critical line