Properties

Label 2-3344-1.1-c1-0-81
Degree $2$
Conductor $3344$
Sign $-1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.98·3-s − 3.49·5-s − 1.06·7-s + 5.88·9-s − 11-s − 0.0563·13-s − 10.4·15-s − 4.53·17-s + 19-s − 3.18·21-s + 1.07·23-s + 7.19·25-s + 8.59·27-s + 0.299·29-s − 9.18·31-s − 2.98·33-s + 3.72·35-s + 4.50·37-s − 0.167·39-s + 12.0·41-s − 10.7·43-s − 20.5·45-s − 2.89·47-s − 5.86·49-s − 13.5·51-s − 12.3·53-s + 3.49·55-s + ⋯
L(s)  = 1  + 1.72·3-s − 1.56·5-s − 0.403·7-s + 1.96·9-s − 0.301·11-s − 0.0156·13-s − 2.68·15-s − 1.10·17-s + 0.229·19-s − 0.694·21-s + 0.225·23-s + 1.43·25-s + 1.65·27-s + 0.0556·29-s − 1.64·31-s − 0.518·33-s + 0.630·35-s + 0.740·37-s − 0.0268·39-s + 1.87·41-s − 1.63·43-s − 3.06·45-s − 0.422·47-s − 0.837·49-s − 1.89·51-s − 1.69·53-s + 0.470·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 2.98T + 3T^{2} \)
5 \( 1 + 3.49T + 5T^{2} \)
7 \( 1 + 1.06T + 7T^{2} \)
13 \( 1 + 0.0563T + 13T^{2} \)
17 \( 1 + 4.53T + 17T^{2} \)
23 \( 1 - 1.07T + 23T^{2} \)
29 \( 1 - 0.299T + 29T^{2} \)
31 \( 1 + 9.18T + 31T^{2} \)
37 \( 1 - 4.50T + 37T^{2} \)
41 \( 1 - 12.0T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 2.89T + 47T^{2} \)
53 \( 1 + 12.3T + 53T^{2} \)
59 \( 1 - 1.14T + 59T^{2} \)
61 \( 1 + 8.09T + 61T^{2} \)
67 \( 1 + 11.2T + 67T^{2} \)
71 \( 1 + 13.4T + 71T^{2} \)
73 \( 1 + 11.1T + 73T^{2} \)
79 \( 1 + 11.4T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 + 0.183T + 89T^{2} \)
97 \( 1 - 5.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.214803737777390179134356684742, −7.57932761179425134646029797965, −7.25298759937769780827013989211, −6.22307377998990891525157536429, −4.72349457424629295371279946153, −4.18162946087953513154160259659, −3.33450498956722219457749929192, −2.89136108782975314762520037784, −1.71300969595905993635703838786, 0, 1.71300969595905993635703838786, 2.89136108782975314762520037784, 3.33450498956722219457749929192, 4.18162946087953513154160259659, 4.72349457424629295371279946153, 6.22307377998990891525157536429, 7.25298759937769780827013989211, 7.57932761179425134646029797965, 8.214803737777390179134356684742

Graph of the $Z$-function along the critical line