L(s) = 1 | − i·2-s − 4-s + (1 − i)5-s + i·8-s − i·9-s + (−1 − i)10-s + 16-s + 17-s − 18-s + (−1 + i)20-s − i·25-s + (1 − i)29-s − i·32-s − i·34-s + i·36-s + (−1 + i)37-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (1 − i)5-s + i·8-s − i·9-s + (−1 − i)10-s + 16-s + 17-s − 18-s + (−1 + i)20-s − i·25-s + (1 − i)29-s − i·32-s − i·34-s + i·36-s + (−1 + i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.788+0.615i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.788+0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.788+0.615i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2843,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.788+0.615i)
|
Particular Values
L(21) |
≈ |
1.358232211 |
L(21) |
≈ |
1.358232211 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 7 | 1 |
| 17 | 1−T |
good | 3 | 1+iT2 |
| 5 | 1+(−1+i)T−iT2 |
| 11 | 1−iT2 |
| 13 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1+(−1+i)T−iT2 |
| 31 | 1+iT2 |
| 37 | 1+(1−i)T−iT2 |
| 41 | 1+(1+i)T+iT2 |
| 43 | 1+T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1+T2 |
| 61 | 1+(−1−i)T+iT2 |
| 67 | 1−T2 |
| 71 | 1+iT2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1−iT2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.697110020316634563007092859195, −8.218461130640259915870701265046, −6.97185243947968735825637832093, −5.94295530227994839951083086231, −5.40497688836295314121031880538, −4.60127189344037187120258141629, −3.71589776636210439291140395299, −2.82000327023422200456686663783, −1.70607229695763933127210759749, −0.894378655439629435642484357070,
1.58963277607082267870183528224, 2.76639974321406096970467182040, 3.63283968892761488034441673367, 4.90901771012926610417118480275, 5.37516842637644558425263657366, 6.21055863605209663476274700992, 6.81343652147486035026172025044, 7.50575887639937940949158821573, 8.202334424155764257956765858584, 8.988317510774996668541736067437