L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (0.0999 + 0.758i)5-s + (0.707 + 0.707i)8-s + (−0.258 + 0.965i)9-s + (−0.0999 + 0.758i)10-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.499 + 0.866i)18-s + (−0.292 + 0.707i)20-s + (0.400 − 0.107i)25-s + (0.707 + 0.292i)29-s + (0.258 + 0.965i)32-s − i·34-s + (−0.707 + 0.707i)36-s + (−0.758 + 0.0999i)37-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (0.0999 + 0.758i)5-s + (0.707 + 0.707i)8-s + (−0.258 + 0.965i)9-s + (−0.0999 + 0.758i)10-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.499 + 0.866i)18-s + (−0.292 + 0.707i)20-s + (0.400 − 0.107i)25-s + (0.707 + 0.292i)29-s + (0.258 + 0.965i)32-s − i·34-s + (−0.707 + 0.707i)36-s + (−0.758 + 0.0999i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.123−0.992i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.123−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.123−0.992i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.123−0.992i)
|
Particular Values
L(21) |
≈ |
2.340239883 |
L(21) |
≈ |
2.340239883 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 7 | 1 |
| 17 | 1+(0.258+0.965i)T |
good | 3 | 1+(0.258−0.965i)T2 |
| 5 | 1+(−0.0999−0.758i)T+(−0.965+0.258i)T2 |
| 11 | 1+(−0.965−0.258i)T2 |
| 13 | 1−T2 |
| 19 | 1+(−0.866−0.5i)T2 |
| 23 | 1+(0.258+0.965i)T2 |
| 29 | 1+(−0.707−0.292i)T+(0.707+0.707i)T2 |
| 31 | 1+(0.258−0.965i)T2 |
| 37 | 1+(0.758−0.0999i)T+(0.965−0.258i)T2 |
| 41 | 1+(1.70−0.707i)T+(0.707−0.707i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 59 | 1+(−0.866+0.5i)T2 |
| 61 | 1+(−1.46−1.12i)T+(0.258+0.965i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(0.707+0.707i)T2 |
| 73 | 1+(0.607−0.465i)T+(0.258−0.965i)T2 |
| 79 | 1+(0.258+0.965i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 97 | 1+(0.707+0.292i)T+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.664523605165466202877320599531, −8.147375211143371882560108155336, −7.05828617196057181011390131756, −6.92324425209449342205079439440, −5.89533588073568944849463367848, −5.09451813857499216911187577111, −4.56424734493325392479743343890, −3.34899124692051940482125257461, −2.76597752983309755168459772768, −1.86137447689934077097655311697,
1.05740136694526897986230506952, 2.11276847089133480192130302580, 3.28046304674850454497978475998, 3.91812786811348459960255313787, 4.81926753746392091228970635769, 5.46044152287244802555162706659, 6.34171621573562970195706942602, 6.78410677624725477064403623972, 7.88705168490309106426204937911, 8.718121995825093886757082408793