Properties

Label 2-3332-476.263-c0-0-1
Degree $2$
Conductor $3332$
Sign $0.123 - 0.992i$
Analytic cond. $1.66288$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (0.0999 + 0.758i)5-s + (0.707 + 0.707i)8-s + (−0.258 + 0.965i)9-s + (−0.0999 + 0.758i)10-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.499 + 0.866i)18-s + (−0.292 + 0.707i)20-s + (0.400 − 0.107i)25-s + (0.707 + 0.292i)29-s + (0.258 + 0.965i)32-s i·34-s + (−0.707 + 0.707i)36-s + (−0.758 + 0.0999i)37-s + ⋯
L(s)  = 1  + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (0.0999 + 0.758i)5-s + (0.707 + 0.707i)8-s + (−0.258 + 0.965i)9-s + (−0.0999 + 0.758i)10-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.499 + 0.866i)18-s + (−0.292 + 0.707i)20-s + (0.400 − 0.107i)25-s + (0.707 + 0.292i)29-s + (0.258 + 0.965i)32-s i·34-s + (−0.707 + 0.707i)36-s + (−0.758 + 0.0999i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.123 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.123 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $0.123 - 0.992i$
Analytic conductor: \(1.66288\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (263, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :0),\ 0.123 - 0.992i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.340239883\)
\(L(\frac12)\) \(\approx\) \(2.340239883\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.965 - 0.258i)T \)
7 \( 1 \)
17 \( 1 + (0.258 + 0.965i)T \)
good3 \( 1 + (0.258 - 0.965i)T^{2} \)
5 \( 1 + (-0.0999 - 0.758i)T + (-0.965 + 0.258i)T^{2} \)
11 \( 1 + (-0.965 - 0.258i)T^{2} \)
13 \( 1 - T^{2} \)
19 \( 1 + (-0.866 - 0.5i)T^{2} \)
23 \( 1 + (0.258 + 0.965i)T^{2} \)
29 \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \)
31 \( 1 + (0.258 - 0.965i)T^{2} \)
37 \( 1 + (0.758 - 0.0999i)T + (0.965 - 0.258i)T^{2} \)
41 \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \)
59 \( 1 + (-0.866 + 0.5i)T^{2} \)
61 \( 1 + (-1.46 - 1.12i)T + (0.258 + 0.965i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.707 + 0.707i)T^{2} \)
73 \( 1 + (0.607 - 0.465i)T + (0.258 - 0.965i)T^{2} \)
79 \( 1 + (0.258 + 0.965i)T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \)
97 \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.664523605165466202877320599531, −8.147375211143371882560108155336, −7.05828617196057181011390131756, −6.92324425209449342205079439440, −5.89533588073568944849463367848, −5.09451813857499216911187577111, −4.56424734493325392479743343890, −3.34899124692051940482125257461, −2.76597752983309755168459772768, −1.86137447689934077097655311697, 1.05740136694526897986230506952, 2.11276847089133480192130302580, 3.28046304674850454497978475998, 3.91812786811348459960255313787, 4.81926753746392091228970635769, 5.46044152287244802555162706659, 6.34171621573562970195706942602, 6.78410677624725477064403623972, 7.88705168490309106426204937911, 8.718121995825093886757082408793

Graph of the $Z$-function along the critical line