L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.12 + 1.46i)5-s + (−0.707 − 0.707i)8-s + (−0.965 + 0.258i)9-s + (−1.12 + 1.46i)10-s + (0.500 − 0.866i)16-s + (−0.965 − 0.258i)17-s + (−0.499 − 0.866i)18-s + (−1.70 − 0.707i)20-s + (−0.624 + 2.33i)25-s + (−0.707 + 1.70i)29-s + (0.965 + 0.258i)32-s − i·34-s + (0.707 − 0.707i)36-s + (−1.46 + 1.12i)37-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.12 + 1.46i)5-s + (−0.707 − 0.707i)8-s + (−0.965 + 0.258i)9-s + (−1.12 + 1.46i)10-s + (0.500 − 0.866i)16-s + (−0.965 − 0.258i)17-s + (−0.499 − 0.866i)18-s + (−1.70 − 0.707i)20-s + (−0.624 + 2.33i)25-s + (−0.707 + 1.70i)29-s + (0.965 + 0.258i)32-s − i·34-s + (0.707 − 0.707i)36-s + (−1.46 + 1.12i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.972+0.233i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.972+0.233i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.972+0.233i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2627,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.972+0.233i)
|
Particular Values
L(21) |
≈ |
1.142440303 |
L(21) |
≈ |
1.142440303 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258−0.965i)T |
| 7 | 1 |
| 17 | 1+(0.965+0.258i)T |
good | 3 | 1+(0.965−0.258i)T2 |
| 5 | 1+(−1.12−1.46i)T+(−0.258+0.965i)T2 |
| 11 | 1+(−0.258−0.965i)T2 |
| 13 | 1−T2 |
| 19 | 1+(0.866−0.5i)T2 |
| 23 | 1+(0.965+0.258i)T2 |
| 29 | 1+(0.707−1.70i)T+(−0.707−0.707i)T2 |
| 31 | 1+(0.965−0.258i)T2 |
| 37 | 1+(1.46−1.12i)T+(0.258−0.965i)T2 |
| 41 | 1+(0.292+0.707i)T+(−0.707+0.707i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.5−0.866i)T2 |
| 53 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 59 | 1+(0.866+0.5i)T2 |
| 61 | 1+(−0.758−0.0999i)T+(0.965+0.258i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(−0.707−0.707i)T2 |
| 73 | 1+(−1.83+0.241i)T+(0.965−0.258i)T2 |
| 79 | 1+(0.965+0.258i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 97 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.968604085769015501170310569408, −8.550003453549906757520847215807, −7.36326093813315675667726618535, −6.90454733560109414127536949830, −6.29800337338599488824301582589, −5.53836384695720570934189535091, −5.01896021867004421173504562248, −3.62955722604908126287703879846, −2.96917741610359589758718964647, −2.04036288934781870613153549600,
0.58539248629331278947778383125, 1.87578948984808099513278947038, 2.43011682657594202268918753013, 3.74648874306236670675154747446, 4.50990933550106358646456071087, 5.41002486286836278034573531181, 5.71905655997961533965453186555, 6.60694446302236595815407365992, 8.189322803013431255270351322054, 8.605806865736493017659059497601