L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (0.5 − 0.866i)9-s − 2·13-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.5 − 0.866i)25-s + (−1 + 1.73i)26-s + (0.499 + 0.866i)32-s − 0.999·34-s − 0.999·36-s − 0.999·50-s + (0.999 + 1.73i)52-s + (−1 − 1.73i)53-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (0.5 − 0.866i)9-s − 2·13-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.5 − 0.866i)25-s + (−1 + 1.73i)26-s + (0.499 + 0.866i)32-s − 0.999·34-s − 0.999·36-s − 0.999·50-s + (0.999 + 1.73i)52-s + (−1 − 1.73i)53-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.991−0.126i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.991−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.991−0.126i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2039,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.991−0.126i)
|
Particular Values
L(21) |
≈ |
0.9486639921 |
L(21) |
≈ |
0.9486639921 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 7 | 1 |
| 17 | 1+(0.5+0.866i)T |
good | 3 | 1+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+2T+T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.666240368694767713621973908942, −7.57318488192877308073674614286, −6.83823250939125812839740791210, −6.10221722846231853893072596094, −5.00527919875885398536363600171, −4.61226772355878742124274408018, −3.65039299881290295411485060490, −2.72259065586524609983632754041, −1.95152508359678581101723423990, −0.44385434784124211530261702712,
1.97053740060680400843865440243, 2.89528181419206752831906828286, 4.05679493636604253725648459282, 4.72767493214349438419493053847, 5.31762033894491866688723147196, 6.19367765564667667915382483722, 7.10413381048564031751491802937, 7.55801255485593888238791729295, 8.147287188195646889761782045648, 9.118221012211938747699426161632