L(s) = 1 | + (0.365 − 0.930i)2-s + (−0.0111 + 0.149i)3-s + (−0.733 − 0.680i)4-s + (0.134 + 0.0648i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.966 + 0.145i)9-s + (0.722 − 0.108i)11-s + (0.109 − 0.101i)12-s + (0.455 + 0.571i)13-s + (−0.0747 − 0.997i)14-s + (0.0747 + 0.997i)16-s + (0.955 + 0.294i)17-s + (0.488 − 0.846i)18-s + (0.0546 + 0.139i)21-s + (0.162 − 0.712i)22-s + ⋯ |
L(s) = 1 | + (0.365 − 0.930i)2-s + (−0.0111 + 0.149i)3-s + (−0.733 − 0.680i)4-s + (0.134 + 0.0648i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.966 + 0.145i)9-s + (0.722 − 0.108i)11-s + (0.109 − 0.101i)12-s + (0.455 + 0.571i)13-s + (−0.0747 − 0.997i)14-s + (0.0747 + 0.997i)16-s + (0.955 + 0.294i)17-s + (0.488 − 0.846i)18-s + (0.0546 + 0.139i)21-s + (0.162 − 0.712i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.481+0.876i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.481+0.876i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.481+0.876i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2447,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.481+0.876i)
|
Particular Values
L(21) |
≈ |
1.757025568 |
L(21) |
≈ |
1.757025568 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.365+0.930i)T |
| 7 | 1+(−0.900+0.433i)T |
| 17 | 1+(−0.955−0.294i)T |
good | 3 | 1+(0.0111−0.149i)T+(−0.988−0.149i)T2 |
| 5 | 1+(−0.365−0.930i)T2 |
| 11 | 1+(−0.722+0.108i)T+(0.955−0.294i)T2 |
| 13 | 1+(−0.455−0.571i)T+(−0.222+0.974i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(1.19−0.367i)T+(0.826−0.563i)T2 |
| 29 | 1+(0.900−0.433i)T2 |
| 31 | 1+(0.900−1.56i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.0747+0.997i)T2 |
| 41 | 1+(−0.623+0.781i)T2 |
| 43 | 1+(−0.623−0.781i)T2 |
| 47 | 1+(0.733+0.680i)T2 |
| 53 | 1+(1.21+1.12i)T+(0.0747+0.997i)T2 |
| 59 | 1+(−0.365+0.930i)T2 |
| 61 | 1+(−0.0747+0.997i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.367+1.61i)T+(−0.900−0.433i)T2 |
| 73 | 1+(0.733−0.680i)T2 |
| 79 | 1+(0.988+1.71i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.222+0.974i)T2 |
| 89 | 1+(0.147+0.0222i)T+(0.955+0.294i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.876518667982110483115303704246, −8.041821987511253315095597841089, −7.22133719107230246322451679055, −6.31933196898849435699427717901, −5.35571524392628963591512710234, −4.68437890968365946780229260621, −3.88316028410984038302803113404, −3.38298266180389679943794909545, −1.68784286700694512684485983916, −1.46237620828986753753954683686,
1.20428093689085394173066419885, 2.52562505145583689150304974782, 3.84472277537081628355889239674, 4.29804224163850949562555438930, 5.26510354460159993594255532510, 5.95653514296305028677058144967, 6.62030809972976821056019763691, 7.58739978104213017043647792654, 7.938446414148832100804882073013, 8.699648136904427596636333757796