L(s) = 1 | + (0.365 − 0.930i)2-s + (−0.0111 + 0.149i)3-s + (−0.733 − 0.680i)4-s + (0.134 + 0.0648i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.966 + 0.145i)9-s + (0.722 − 0.108i)11-s + (0.109 − 0.101i)12-s + (0.455 + 0.571i)13-s + (−0.0747 − 0.997i)14-s + (0.0747 + 0.997i)16-s + (0.955 + 0.294i)17-s + (0.488 − 0.846i)18-s + (0.0546 + 0.139i)21-s + (0.162 − 0.712i)22-s + ⋯ |
L(s) = 1 | + (0.365 − 0.930i)2-s + (−0.0111 + 0.149i)3-s + (−0.733 − 0.680i)4-s + (0.134 + 0.0648i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.966 + 0.145i)9-s + (0.722 − 0.108i)11-s + (0.109 − 0.101i)12-s + (0.455 + 0.571i)13-s + (−0.0747 − 0.997i)14-s + (0.0747 + 0.997i)16-s + (0.955 + 0.294i)17-s + (0.488 − 0.846i)18-s + (0.0546 + 0.139i)21-s + (0.162 − 0.712i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.481 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.481 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.757025568\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.757025568\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.365 + 0.930i)T \) |
| 7 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (-0.955 - 0.294i)T \) |
good | 3 | \( 1 + (0.0111 - 0.149i)T + (-0.988 - 0.149i)T^{2} \) |
| 5 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 11 | \( 1 + (-0.722 + 0.108i)T + (0.955 - 0.294i)T^{2} \) |
| 13 | \( 1 + (-0.455 - 0.571i)T + (-0.222 + 0.974i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.19 - 0.367i)T + (0.826 - 0.563i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.900 - 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 53 | \( 1 + (1.21 + 1.12i)T + (0.0747 + 0.997i)T^{2} \) |
| 59 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.367 + 1.61i)T + (-0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 79 | \( 1 + (0.988 + 1.71i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (0.147 + 0.0222i)T + (0.955 + 0.294i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.876518667982110483115303704246, −8.041821987511253315095597841089, −7.22133719107230246322451679055, −6.31933196898849435699427717901, −5.35571524392628963591512710234, −4.68437890968365946780229260621, −3.88316028410984038302803113404, −3.38298266180389679943794909545, −1.68784286700694512684485983916, −1.46237620828986753753954683686,
1.20428093689085394173066419885, 2.52562505145583689150304974782, 3.84472277537081628355889239674, 4.29804224163850949562555438930, 5.26510354460159993594255532510, 5.95653514296305028677058144967, 6.62030809972976821056019763691, 7.58739978104213017043647792654, 7.938446414148832100804882073013, 8.699648136904427596636333757796