L(s) = 1 | + (0.733 − 0.680i)2-s + (0.294 − 0.0444i)3-s + (0.0747 − 0.997i)4-s + (0.185 − 0.233i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.870 + 0.268i)9-s + (−1.29 − 0.400i)11-s + (−0.0222 − 0.297i)12-s + (−0.326 − 1.42i)13-s + (0.149 − 0.988i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−0.455 + 0.789i)18-s + (0.202 − 0.218i)21-s + (−1.22 + 0.590i)22-s + ⋯ |
L(s) = 1 | + (0.733 − 0.680i)2-s + (0.294 − 0.0444i)3-s + (0.0747 − 0.997i)4-s + (0.185 − 0.233i)6-s + (0.781 − 0.623i)7-s + (−0.623 − 0.781i)8-s + (−0.870 + 0.268i)9-s + (−1.29 − 0.400i)11-s + (−0.0222 − 0.297i)12-s + (−0.326 − 1.42i)13-s + (0.149 − 0.988i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−0.455 + 0.789i)18-s + (0.202 − 0.218i)21-s + (−1.22 + 0.590i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801+0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.801+0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.801+0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.801+0.598i)
|
Particular Values
L(21) |
≈ |
1.756358729 |
L(21) |
≈ |
1.756358729 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.733+0.680i)T |
| 7 | 1+(−0.781+0.623i)T |
| 17 | 1+(−0.826+0.563i)T |
good | 3 | 1+(−0.294+0.0444i)T+(0.955−0.294i)T2 |
| 5 | 1+(0.733+0.680i)T2 |
| 11 | 1+(1.29+0.400i)T+(0.826+0.563i)T2 |
| 13 | 1+(0.326+1.42i)T+(−0.900+0.433i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−1.61−1.09i)T+(0.365+0.930i)T2 |
| 29 | 1+(−0.623−0.781i)T2 |
| 31 | 1+(0.781−1.35i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.988−0.149i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(0.222+0.974i)T2 |
| 47 | 1+(−0.0747+0.997i)T2 |
| 53 | 1+(−0.0546+0.728i)T+(−0.988−0.149i)T2 |
| 59 | 1+(0.733−0.680i)T2 |
| 61 | 1+(0.988−0.149i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−1.67+0.807i)T+(0.623−0.781i)T2 |
| 73 | 1+(−0.0747−0.997i)T2 |
| 79 | 1+(0.294+0.510i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(−1.88+0.582i)T+(0.826−0.563i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.414215914752464600715475529059, −7.77555323832300806656112459490, −7.17944306504826164807210930712, −5.82901349478134368267909058792, −5.18961737113302489315932100795, −4.96092224739470216469176086226, −3.40098253290197017676696325720, −3.11227707907474474955394302873, −2.09543318601966574753378176228, −0.75281708539361017126704520878,
2.09650532055160615195493078363, 2.70043378715972056883347769835, 3.75502151397471017423932353466, 4.67767455482159794741944164178, 5.32607091770622523392743490995, 5.91829963951375480858887904375, 6.86715713257095363834036002697, 7.69103101291960758305778241672, 8.144283013952964666500262578281, 8.968893554813934164594052186964