L(s) = 1 | + (−0.988 + 0.149i)2-s + (−1.36 − 0.930i)3-s + (0.955 − 0.294i)4-s + (1.48 + 0.716i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.632 + 1.61i)9-s + (0.722 − 1.84i)11-s + (−1.57 − 0.487i)12-s + (−1.23 − 1.54i)13-s + (−0.826 + 0.563i)14-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (−0.865 − 1.49i)18-s + (−1.63 − 0.246i)21-s + (−0.440 + 1.92i)22-s + ⋯ |
L(s) = 1 | + (−0.988 + 0.149i)2-s + (−1.36 − 0.930i)3-s + (0.955 − 0.294i)4-s + (1.48 + 0.716i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.632 + 1.61i)9-s + (0.722 − 1.84i)11-s + (−1.57 − 0.487i)12-s + (−1.23 − 1.54i)13-s + (−0.826 + 0.563i)14-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (−0.865 − 1.49i)18-s + (−1.63 − 0.246i)21-s + (−0.440 + 1.92i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3537961582\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3537961582\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.988 - 0.149i)T \) |
| 7 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (0.733 - 0.680i)T \) |
good | 3 | \( 1 + (1.36 + 0.930i)T + (0.365 + 0.930i)T^{2} \) |
| 5 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 11 | \( 1 + (-0.722 + 1.84i)T + (-0.733 - 0.680i)T^{2} \) |
| 13 | \( 1 + (1.23 + 1.54i)T + (-0.222 + 0.974i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.914 - 0.848i)T + (0.0747 + 0.997i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.900 + 1.56i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 53 | \( 1 + (-0.142 + 0.0440i)T + (0.826 - 0.563i)T^{2} \) |
| 59 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 61 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.0332 + 0.145i)T + (-0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 79 | \( 1 + (-0.365 + 0.632i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.603 - 1.53i)T + (-0.733 + 0.680i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.144142521591522882705506410555, −7.69902851501753271415373516423, −7.09268378297203453487922965574, −6.14522106836857224710555371569, −5.72792327033924935058227998708, −5.06931848759168048901161940803, −3.60963968349958761813752442029, −2.27964117513428697604530071209, −1.22187240350877193597530093889, −0.38194429820159092299038854588,
1.60605356429206217793828883695, 2.36006277633540687133552307198, 4.05535497323619597215368257682, 4.71624792654173289738878429580, 5.17451735656388856794913972940, 6.43447165772486113743304394444, 6.96437364361491903784975747126, 7.48115320577441897959843129125, 8.913132234252971101104060558532, 9.236339687777072303029484121999