Properties

Label 2-3332-3332.1563-c0-0-2
Degree $2$
Conductor $3332$
Sign $-0.999 - 0.0213i$
Analytic cond. $1.66288$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.988 + 0.149i)2-s + (−1.36 − 0.930i)3-s + (0.955 − 0.294i)4-s + (1.48 + 0.716i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.632 + 1.61i)9-s + (0.722 − 1.84i)11-s + (−1.57 − 0.487i)12-s + (−1.23 − 1.54i)13-s + (−0.826 + 0.563i)14-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (−0.865 − 1.49i)18-s + (−1.63 − 0.246i)21-s + (−0.440 + 1.92i)22-s + ⋯
L(s)  = 1  + (−0.988 + 0.149i)2-s + (−1.36 − 0.930i)3-s + (0.955 − 0.294i)4-s + (1.48 + 0.716i)6-s + (0.900 − 0.433i)7-s + (−0.900 + 0.433i)8-s + (0.632 + 1.61i)9-s + (0.722 − 1.84i)11-s + (−1.57 − 0.487i)12-s + (−1.23 − 1.54i)13-s + (−0.826 + 0.563i)14-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (−0.865 − 1.49i)18-s + (−1.63 − 0.246i)21-s + (−0.440 + 1.92i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0213i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-0.999 - 0.0213i$
Analytic conductor: \(1.66288\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (1563, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :0),\ -0.999 - 0.0213i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3537961582\)
\(L(\frac12)\) \(\approx\) \(0.3537961582\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.988 - 0.149i)T \)
7 \( 1 + (-0.900 + 0.433i)T \)
17 \( 1 + (0.733 - 0.680i)T \)
good3 \( 1 + (1.36 + 0.930i)T + (0.365 + 0.930i)T^{2} \)
5 \( 1 + (0.988 + 0.149i)T^{2} \)
11 \( 1 + (-0.722 + 1.84i)T + (-0.733 - 0.680i)T^{2} \)
13 \( 1 + (1.23 + 1.54i)T + (-0.222 + 0.974i)T^{2} \)
19 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.914 - 0.848i)T + (0.0747 + 0.997i)T^{2} \)
29 \( 1 + (0.900 - 0.433i)T^{2} \)
31 \( 1 + (0.900 + 1.56i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (-0.826 - 0.563i)T^{2} \)
41 \( 1 + (-0.623 + 0.781i)T^{2} \)
43 \( 1 + (-0.623 - 0.781i)T^{2} \)
47 \( 1 + (-0.955 + 0.294i)T^{2} \)
53 \( 1 + (-0.142 + 0.0440i)T + (0.826 - 0.563i)T^{2} \)
59 \( 1 + (0.988 - 0.149i)T^{2} \)
61 \( 1 + (-0.826 - 0.563i)T^{2} \)
67 \( 1 + (0.5 - 0.866i)T^{2} \)
71 \( 1 + (-0.0332 + 0.145i)T + (-0.900 - 0.433i)T^{2} \)
73 \( 1 + (-0.955 - 0.294i)T^{2} \)
79 \( 1 + (-0.365 + 0.632i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + (0.222 + 0.974i)T^{2} \)
89 \( 1 + (-0.603 - 1.53i)T + (-0.733 + 0.680i)T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144142521591522882705506410555, −7.69902851501753271415373516423, −7.09268378297203453487922965574, −6.14522106836857224710555371569, −5.72792327033924935058227998708, −5.06931848759168048901161940803, −3.60963968349958761813752442029, −2.27964117513428697604530071209, −1.22187240350877193597530093889, −0.38194429820159092299038854588, 1.60605356429206217793828883695, 2.36006277633540687133552307198, 4.05535497323619597215368257682, 4.71624792654173289738878429580, 5.17451735656388856794913972940, 6.43447165772486113743304394444, 6.96437364361491903784975747126, 7.48115320577441897959843129125, 8.913132234252971101104060558532, 9.236339687777072303029484121999

Graph of the $Z$-function along the critical line